Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge2\)
Miền xác định của hàm ko đối xứng nên hàm ko chẵn ko lẻ
b/ ĐKXĐ: \(-2\le x\le2\)
\(f\left(-x\right)=\sqrt{2-x}+\sqrt{2+x}=f\left(x\right)\) nên hàm chẵn
c/ ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\0< x\le2\end{matrix}\right.\)
\(f\left(-x\right)=\frac{\sqrt{2-x}+\sqrt{2+x}}{-x}=-f\left(x\right)\Rightarrow\) hàm lẻ
d/ \(f\left(-x\right)=x^2-3x+1\Rightarrow\) hàm ko chẵn ko lẻ
e/ \(f\left(-x\right)=\left|-x+1\right|+\left|-x-1\right|=\left|x-1\right|+\left|x+1\right|=f\left(x\right)\Rightarrow\) hàm chẵn
f/ \(f\left(-x\right)=\left|-2x+1\right|-\left|-2x-1\right|=\left|2x-1\right|-\left|2x+1\right|=-f\left(x\right)\)
\(\Rightarrow\) Hàm lẻ
a) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+29-1\right)\left(x^2-11x+29+1\right)=1680\\ \)
Đặt \(x^2-11x+29=t\), ta đc \(\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1=1680\Leftrightarrow t^2=1681\Leftrightarrow t=\pm41\)
Với \(t=41\Leftrightarrow x^2-11x+28=40\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)
Với \(t=-41\Leftrightarrow x^2-11x+30=-40\)(vô no)
Vậy.....
c) \(x^4-7x^3+14x^2-7x+1=0\\ \Leftrightarrow x^2-7x+14-\frac{7}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+14=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
Ta đc \(t^2-2-7t+14=0\Leftrightarrow t^2-7t+12=0\)
\(\Rightarrow\left[{}\begin{matrix}t=4\\t=3\end{matrix}\right.\)
B tự giải tiếp nha
Quy tắc xét tính chẵn lẻ của hàm số:
Chẵn \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=f\left(-x\right)\end{matrix}\right.\)
Lẻ \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=-f\left(-x\right)\end{matrix}\right.\)
a/ \(g=2x^4-x^2+5\)
\(x\in D=R\Rightarrow-x\in D\)
\(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)
=> hàm số chẵn
b/ \(y=x^3+3x\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)\)
\(\Rightarrow y\left(x\right)=-y\left(-x\right)\)
=> hàm số lẻ
c/ \(y=x^3+3x+1\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)+1=-x^3-3x+1\)
\(\Rightarrow\left\{{}\begin{matrix}y\left(x\right)\ne y\left(-x\right)\\y\left(x\right)\ne-y\left(-x\right)\end{matrix}\right.\)
=> hàm số ko chẵn ko lẻ
d/ \(y=x^4-3\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^4-3=x^4-3=y\left(x\right)\)
=> hàm số chẵn
e/ \(y=3x^4-\left|x\right|+2\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=3\left(-x\right)^4-\left|-x\right|+2=3x^4-\left|x\right|+2=y\left(x\right)\)
=> hàm số chẵn
f/ \(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+ \left|x-1\right|=y\left(x\right)\)
=> hàm số chẵn
Các câu sau làm tương tự
a/ \(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)
Hàm chẵn
b/ \(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-y\left(x\right)\)
Hàm lẻ
c/ \(y\left(-x\right)=-x^3-3x+1\)
Hàm ko chẵn ko lẻ
d/ \(y\left(-x\right)=x^4-3=y\left(x\right)\) hàm chẵn
e/ \(y\left(-x\right)=3x^4-\left|x\right|+2=y\left(x\right)\) hàm chẵn
f/ \(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+\left|x-1\right|=y\left(x\right)\)
Hàm chẵn
g/ \(y\left(-x\right)=\left|-x-1\right|-\left|-x+1\right|=\left|x+1\right|-\left|x-1\right|=-y\left(x\right)\)
Hàm lẻ
h/ Hàm ko chẵn ko lẻ
a)
ĐK: $x-2\geq 0\Leftrightarrow x\geq 2$
TXĐ: $[2;+\infty)$
b)
ĐK: $4x-3\geq 0\Leftrightarrow x\geq \frac{3}{4}$
TXĐ: $[\frac{3}{4};+\infty)$
c) ĐK: \(x+2>0\Leftrightarrow x>-2\)
TXĐ: $(-2;+\infty)$
d)
ĐK: $3-x>0\Leftrightarrow x< 3$
TXĐ: $(-\infty; 3)$
e)
$4-3x>0\Leftrightarrow x< \frac{4}{3}$
TXĐ: $(-\infty; \frac{4}{3})$
f)
ĐK:\(\left\{\begin{matrix} x^2+2\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow x\geq 0\)
TXĐ: $[0;+\infty)$
g) ĐK: \(\left\{\begin{matrix} x^2-2x+1\geq 0\\ 2-3x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2\geq 0\\ x\leq\frac{2}{3}\end{matrix}\right.\Leftrightarrow x\leq \frac{2}{3}\)
TXĐ: $(-\infty; \frac{2}{3}]$
h)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
TXĐ: $[2;+\infty)$
i)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ 2-x\geq 0\end{matrix}\right.\Leftrightarrow 2\geq x\geq -2\)
TXĐ: $[-2;2]$
a)\(F\left(x\right)>0\) khi x thuộc \(\left(\frac{-9}{8};\frac{-1}{3}\right)\cup\left(2;-\infty\right)\)
b) ta có công thức ax2+bx+c=0 thì có a(x-x1)(x-x2)
với x là nghiệm của phương trình trên
vây f(x)>0 khi x thuộc\(\left(-\infty;\frac{-1}{2}\right)\cup\left(\frac{1}{2};+\infty\right)\)
c)f(x)>0 khi x thuộc \(\left(-2;\frac{-1}{2}\right)\cup\left(1:+\infty\right)\)
a) f (x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
= \(\frac{-4\left(2-x\right)-3\left(3x+1\right)}{\left(3x+1\right)\left(2-x\right)}=\frac{-8+4-9x-3}{\left(3x+1\right)\left(2-x\right)}\) = \(\frac{-5x-11}{\left(3x+1\right)\left(2-x\right)}\)
BXD : x \(\frac{-11}{5}\) \(\frac{-1}{3}\) 2
f(x) - 0 + \(||\) - \(||\) +
Vậy f(x) < 0 <=> x ∈ ( -∞ ; \(\frac{-11}{5}\) ) U (\(\frac{-1}{3}\) ; 2)
f(x) > 0 <=> x ∈ ( \(\frac{-11}{5}\); \(\frac{-1}{3}\) ) U (2 ; +∞)
b) f(x) = 4x2 -1
f(x) = (2x-1)(2x+1)
2x-1 =0 <=> x = \(\frac{1}{2}\)
2x +1 =0 <=> x= \(\frac{-1}{2}\)
BXD : x \(\frac{-1}{2}\) \(\frac{1}{2}\)
f(x) + 0 - 0 +
f(x) >0 khi x ∈ ( -∞ ; \(\frac{-1}{2}\)) U ( \(\frac{1}{2}\); +∞)
f(x) <0 khi x ∈ ( \(\frac{-1}{2}\); \(\frac{1}{2}\))
c) f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
2x +1 = 0 <=> x= \(\frac{-1}{2}\)
x-1 =0 <=> x = 1
x+2 =0 <=> x = -2
BXD : x -2 \(\frac{-1}{2}\) 1
f(x) + \(||\) - 0 + \(||\) -
Vậy f(x) >0 khi x ∈ ( -∞ ;-2) U ( \(\frac{-1}{2}\) ; 1)
f(x)<0 khi x ∈ ( -2 ; \(\frac{-1}{2}\)) U ( 1; +∞)
a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)
Hàm chẵn
b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)
Hàm lẻ
c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)
Hàm chẵn
d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)
Hàm ko chẵn ko lẻ
e/ Tương tự câu trên, hàm ko chẵn ko lẻ
f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)
Hàm lẻ trong miền xác định