Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định của y = f(x) = |x| là D = R.
∀x ∈ R => -x ∈ R
f(- x) = |- x| = |x| = f(x)
Vậy hàm số y = |x| là hàm số chẵn.
b) Tập xác định của
y = f(x) = (x + 2)2 là R.
x ∈ R => -x ∈ R
f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)
f(- x) ≠ - f(x) = - x2 – 4x - 4
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) D = R, x ∈ D => -x ∈ D
f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)
Vậy hàm số đã cho là hàm số lẻ.
d) Hàm số không chẵn cũng không lẻ.
a)TXĐ D=[-2:2]
\(\forall x\in D\Rightarrow-x\in D\)
f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)
Hàm số đồng biến
Câu b) c) giống rồi tự xử nha
d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)
TXĐ D=R
\(\forall x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)
Hàm số không chẵn không lẻ
a) miền xác định của \(f\) là \(D=R\backslash\left\{\pm1\right\}\)
\(\text{∀}x\in D\), ta có: \(-x\in D\) và \(f\left(-x\right)=\frac{2x^4-x^2+3}{x^2-2}=f\left(x\right)\)
\(\Rightarrow\) \(f\) là hàm số chẵn
b) Ta có: \(\left|2x+1\right|-\left|2x-1\right|\ne0\)\(\Leftrightarrow\left|2x+1\right|\ne\left|2x-1\right|\)
\(\Leftrightarrow\left(2x+1\right)^2\ne\left(2x-1\right)^2\)
\(\Leftrightarrow x\ne0\)
\(\Rightarrow\) Miền xác định của \(f\) là \(D=R\backslash\left\{0\right\}\)
khi đó \(\text{∀}x\in D\) thì \(-x\in D\) và :
\(f\left(-x\right)=\frac{\left|-2x+1\right|+\left|-2x-1\right|}{\left|-2x+1\right|-\left|-2x-1\right|}\)\(=\frac{\left|2x-1\right|+\left|2x+1\right|}{\left|2x-1\right|-\left|2x+1\right|}\)\(=-\frac{\left|2x+1\right|+\left|2x-1\right|}{\left|2x+1\right|-\left|2x-1\right|}\)
\(=-f\left(x\right)\Rightarrow f\) là hàm số lẻ
lời giải
a) Hàm chẵn
b) f(x) =f(-x)=>hàm chẵn
c) không chẵn, không lẻ
d)f(-x) =\(\dfrac{-x^4+x^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-f\left(x\right)\) =>hàm lẻ
a) y vừa là hàm số chẵn, vừa là hàm số lẻ.
b) TXĐ: R tự đối xứng.
\(y\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=y\left(x\right)\).
Vậy y là hàm số chẵn.
c) TXĐ: R tự đối xứng.
\(y\left(-x\right)=-\left(-x\right)^4+3\left(-x\right)-2=-x^4-3x-2\)
\(-y\left(x\right)=x^4-3x+2\).
Dẽ thấy \(y\left(-x\right)\ne y\left(x\right)\) và \(y\left(-x\right)\ne-y\left(x\right)\) nên y không là hàm chẵn và hàm số lẻ.
D) TXĐ: R\ {0} tự đối xứng.
\(y\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-y\left(x\right)\)
Vậy y là hàm số lẻ.
a) Tập xác định của y = f(x) = |x| là D = R.
∀x ∈ R => -x ∈ R
f(- x) = |- x| = |x| = f(x)
Vậy hàm số y = |x| là hàm số chẵn.
b) Tập xác định của
y = f(x) = (x + 2)2 là R.
x ∈ R => -x ∈ R
f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)
f(- x) ≠ – f(x) = – x2 – 4x – 4
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) D = R, x ∈ D => -x ∈ D
f(– x) = (– x3) + (– x) = – (x3 + x) = – f(x)
Vậy hàm số đã cho là hàm số lẻ.
d) Hàm số không chẵn cũng không lẻ.
Trả lời: f(3) = 4; f(- 1) = – 1; f(2) = 3.
\(DK:\hept{\begin{cases}-1\le x\le1\\x\ne0\end{cases}}\)
Ta co:
\(f\left(-x\right)=\frac{\sqrt{1-\left(-x\right)}+\sqrt{-x+1}}{\sqrt{-x+2}-\sqrt{2-\left(-x\right)}}=-\left(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\right)=-f\left(x\right)\)
Suy ra: f(x) la ham so chan
#)Bạn tham khảo nhé :
https://www.nguyentheanh.org/ly-thuyet-va-bai-tap-ve-ham-bac-hai-y-ax2-bx-c-a-%E2%89%A0-0-toan-lop-10/
P/s : Mình k hiểu rõ mấy về toán lớp 10 nhưng được thì bạn cứ tham khảo nhé ^^
Xét tính chẵn lẻ của hàm số: y=ax2 + bx + c
Bạn tham Khảo :
BL
Tập xác định D = R, nhưng f(1) = -1 + 3 - 2 = 0 còn f(-11) = -1 - 3 - 2 = -6 nên f(-1) ≠ f(1) và f(-1) ≠ -f(1)
Vậy hàm số đã cho không là hàm số chẵn cũng không là hàm số lẻ.