Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a)
\(y=\frac{\sqrt{4-x}+\sqrt{x+3}}{\left(\left|x\right|-1\right)\sqrt{x^2-2x+1}}\\ ĐK:\left[{}\begin{matrix}4-x\ge0\\x+3\ge0\\\left|x\right|-1\ne0\\x^2-2x+1>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\le4\\x\ge-3\\x\ne\pm1\\\left(x-1\right)^2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4\\x\ge-3\\x\ne\pm1\\x\ne1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-3\le x\le4\\x\ne\pm1\end{matrix}\right.\\ TXĐ:D=\left[-3;4\right]\backslash\left\{-1;1\right\}\)
\(b.\\ y=\frac{\sqrt{x^2-6x+9}+\sqrt{\left|x\right|-2}}{\left(x^4-4x^2+3\right)\left(\sqrt{x}-2\right)}\\ ĐK:\left\{{}\begin{matrix}x^2-6x+9\ge0\\\left|x\right|-2\ge0\\x^4-4x^2+3\ne0\\\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-2\ne0\end{matrix}\right.\end{matrix}\right. \)
(tương tự câu a)
2)
\(y=f\left(x\right)=\frac{x^4-6x^2+2}{\left|x\right|-1}\\ ĐK:\left|x\right|-1\ne0\Leftrightarrow x\ne\pm1\\ TXĐ:D=R\backslash\left\{-1;1\right\}\\ \forall x\in D\Rightarrow-x\in D\)
Ta có: f(-x)=\(\frac{\left(-x\right)^4-6\left(-x\right)^2+2}{\left|-x\right|-1}=\frac{x^4-6x^2+2}{\left|x\right|-1}\)
=f(x)
⇒Hàm số đã cho là hàm số chẵn
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)
\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)
Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :
\(\sqrt{4y}+\sqrt{y+1}=2\)
\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)
Giải pt thu được (x;y)
Th2:x=-y thay vào \(\left(\circledast\right)\), ta có
\(\sqrt{-2x}+\sqrt{y+1}=2\)
Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)
Vậy ....
2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)
Th1:\(x=y+1\)
Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
Th2:\(x=-y^2\)thay vào ta có:
\(\sqrt{-y^2}+\sqrt{y+1}=2\)
vì \(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt
\(\Rightarrow\)Pt vô nghiệm
a)TXĐ D=[-2:2]
\(\forall x\in D\Rightarrow-x\in D\)
f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)
Hàm số đồng biến
Câu b) c) giống rồi tự xử nha
d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)
TXĐ D=R
\(\forall x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)
Hàm số không chẵn không lẻ