K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Do \(10 > 1\) nên hàm số \(P\left( t \right) = {50.10^{kt}}\) đồng biến trên \(\mathbb{R}\).

a) Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.

Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(t > 10\) thì số lượng cá thể vi khuẩn vượt quá 50000.

b) Thời gian để số lượng cá thể vi khuẩn đạt đến 100000 là:

\(100000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 2000 \Leftrightarrow 0,3t = \log 2000 \Leftrightarrow t \approx 11\) (giờ)

Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.

Tại thời điểm \(t = 11\) thì số lượng cá thể vi khuẩn bằng 100000.

Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(10 < t < 11\) thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Số cá thể vi khuẩn ban đầu mẻ có là:

\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)

b) Với \(t = 1,P\left( t \right) = 100\) ta có:

\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)

c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:

\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ban đầu có 500 con vi khuẩn và sau 1h tăng lên 800 con, ta có:

\(800=500\cdot e^r\Rightarrow r\approx ln1,6\)

a, Sau 5h thì số lượng vi khuẩn là: 

\(N\left(5\right)=500\cdot e^{5\cdot ln1,6}=5242,88\left(con\right)\)

b, Số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi nên ta có:

\(2N_0=N_0\cdot e^{t\cdot ln1,6}\Leftrightarrow e^{t\cdot ln1,6}=2\Leftrightarrow t\cdot ln1,6=ln2\Leftrightarrow t\approx1,47\)

Vậy sau khoảng 1,47h thì số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi.

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Số lượng vi khuẩn sau mỗi giờ tạo thành cấp số nhân với \({u_1} = 5000,\;q = 1,08\).

Suy ra công thức số hạng tổng quát: \({u_n} = 5000 \times \;1,{08^{n - 1}}\).

Vậy sau 5 giờ thì số lượng vi khuẩn là: \({u_5} = 5000 \times 1,{08^{5 - 1}} = 6802,44\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a, Ban đầu có 1000 vi khuẩn nên \(P_0=1000\)

Sau 2 ngày, số lượng vi khuẩn là:

\(P=125\%P_0=125\%\cdot1000=1250\)

Ta có: 

\(P\left(2\right)=P_0\cdot a^2\\ \Leftrightarrow1250=1000\cdot a^2\\ \Leftrightarrow a^2=1,25\\ \Leftrightarrow a\approx1,12\)

b, Số lượng vi khuẩn sau 5 ngày là: 

\(P\left(5\right)=P_0\cdot a^5=1000\cdot1,12^2\approx1800\) (vi khuẩn)

c, Với \(P\left(t\right)=P_0\cdot a^t\), ta có:

\(P\left(t\right)=P_0\cdot a^t\\ \Leftrightarrow2P_0=P_0\cdot1,12^t\\ \Leftrightarrow1,12^t=2\\ \Leftrightarrow t=log_{1,12}2\approx6,1\)

Vậy sau 6,1 ngày thì số lượng vi khuẩn vượt gấp đôi số lượng ban đầu.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

Mỗi năm số cá thể của quần thế này tăng: \(12\%-2\%-8\%=2\%\)

Giả sử số cá thể của quần thể đó là dãy số \(\left(u_n\right)\) với \(u_1=110000\)

Ta có: 

\(u_1=110000\\ u_2=u_1+u_1\cdot\dfrac{2}{100}=u_1\cdot1,02\\ u_3=u_2+u_2\cdot\dfrac{2}{100}=u_2\cdot1,02\\ ...\\ u_n=u_{n-1}+u_{n-1}\cdot\dfrac{2}{100}=u_{n-1}\cdot1,02\)

Vậy số cá thể của quần thể đó tạo thành cấp số nhân với số hạng đầu \(u_1=110000\) và công bội \(q=1,02\)

Số cá thể của quần thể đó sau 2 năm là: \(u_3=u_1\cdot q^2=110000\cdot1,02^2=114444\) (cá thể)

Theo đề, ta có: N(t)>80000

=>\(500\cdot e^{0.4t}>80000\)

=>\(e^{0.4t}>160\)

=>\(0.4t>ln160\)

=>\(t\simeq12,68\simeq13\)

=>Sau 13h thì số lượng vi khuẩn vượt qua 80000 con

20 tháng 8 2023

tham khảo

a) Khối lượng vi khuẩn tại thời điểm bắt đầu nuôi cấy là:

\(M\left(0\right)=50.1,06^0=50\left(g\right)\)

b) Khối lượng vi khuẩn sau \(2\) giờ là:

\(M\left(2\right)=50.1,06^2=56,18\left(g\right)\)

Khối lượng vi khuẩn sau \(10\) giờ là:

\(M\left(10\right)=50.1,06^{10}\approx89,54\left(g\right)\)

c) Xét hàm số \(M\left(t\right)=50.1,06^t\).

Vì \(1,06>1\) nên hàm số \(M\left(t\right)=50.1,06^t\)  là hàm số đồng biến. Vậy khối lượng vi khuẩn tăng dần theo thời gian.

Sau 1p, số vi khuẩn sẽ là:

\(2\cdot3=6\left(con\right)\)

Sau 2p, số vi khuẩn sẽ là:

\(2\cdot3\cdot3=6\cdot3\left(con\right)\)

...

Sau 5 phút, số vi khuẩn sẽ là:

\(2\cdot3\cdot3\cdot3\cdot3\cdot3=2\cdot3^5=486\left(con\right)\)

25 tháng 8 2023

Số lượng vi khuẩn trong ống nghiệm sau \(n\) phút là một cấp số nhân có số hạng đầu \(u_1=1\) và công bội \(q=2\).

Số lượng vi khuẩn trong ống nghiệm sau \(20\) phút là:

    \(u_{20}=u_1.q^{n-1}=1.2^{20-1}=524288\)(vi khuẩn).