Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Delta=9-20=-11\) vô nghiêm
=> A luôn dương (+) với mọi x thuộc R
b) {a-b+c=0}
B= 0 khi x= -1 hoặc x= 5/2
B>0 khi -1<x<5/2
B<0 khi x<-1 hoặc x>/52
c) x^2 +12x+36 =(x+6)^2
C = 0 khi x =-6
C > 0 mọi x khác -6
d)
D = 0 khi x =3/2 hoặc x=-5
D> 0 khi x<-5 hoặc x>3/2
D<0 khi -5<x<3/2
a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)
\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)
F(x) =0 khi x={-2,0,1}
F(x) > 0 khi x<1 và khác -2 và 0
f(x) <0 khi x> 1
Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)
tương tự a) dấu của tử phụ thuộc (x-1)(x-2)
Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)
Phần hỗ trợ Lập bảng đây khó thao tác
=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}
Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0
Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định
Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)
khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0
khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0
khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0
a)
\(A=2x^2+5x+2\) \(\Delta=25-16=9\)
Nếu \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow A=0\)
nếu \(\left[{}\begin{matrix}x< -2\\x>-\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow A>0\)
Nếu \(-2< x< \dfrac{1}{4}\Rightarrow A< 0\)
b) \(B=4x^2-3x-1\) {a+b+c=0}
Nếu x={1,-1/4} => B=0
Nếu x<-1/4 hoặc x>1 thì B>0
Nếu -1/4<x<1 thì B<0
c)
\(C=-3x^2+5x+1\) \(\Delta=25+12=37\)
\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{6}\\x=\dfrac{5-\sqrt{37}}{6}\end{matrix}\right.\) \(\Rightarrow C=0\)
\(\dfrac{5-\sqrt{37}}{6}< x< \dfrac{5+\sqrt{37}}{6}\Rightarrow C>0\)
\(\left[{}\begin{matrix}x>\dfrac{5+\sqrt{37}}{6}\\x< \dfrac{5-\sqrt{37}}{6}\end{matrix}\right.\) \(\Rightarrow C< 0\)
a: \(-x^2+x+6=-\left(x-3\right)\left(x+2\right)\)
b: Đa thức này ko phân tích được nhé bạn
f(x) = (2x – 3)(x + 5) = 2x2 + 7x – 15
Tam thức f(x) = 2x2 + 7x – 15 có hai nghiệm phân biệt x1 = 3/2; x2 = –5, hệ số a = 2 > 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–∞; –5) ∪ (3/2; +∞)
f(x) = 0 khi x = –5 ; x = 3/2
f(x) < 0 khi x ∈ (–5; 3/2)