Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ \(a^2-b=b^2-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)
Tương tự ta có:
\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn sủa lại đề đi: z=(a-b+c)2+8ac
x+y+z=3(a-b+c)2+8ab+8bc-8ac
x+y+z=3(a2+b2+c2-2ab+2ac-2bc)+8ab+8bc-8ac
x+y+z=3a2+b2+3c2+2bc+2ab-2ac
=(a+b)2+(b+c)2+(a-c)2+a2+b2+c2 >0
Vậy.../
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(a^2-b=b^2-c\)
\(\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)
\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)
Cmtt ta có:
\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)
Cre:mạng
![](https://rs.olm.vn/images/avt/0.png?1311)
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2