Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Chọn D
Ta có
Vì f(x) < 0, ∀ x ∈ a ; c nên |f(x)| = –f(x).
Do đó, S 1 = - ∫ a c f x d x .
Tương tự, f(x) > 0, ∀ x ∈ a ; c nên |f(x)| = f(x).
Do đó, S 2 = ∫ c b f x d x .
Vậy S = - ∫ a c f x d x + ∫ c b f x d x .
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .
Đáp án C
Cả hai khẳng định đều sai vì thiếu điều kiện hàm số liên tục.