Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a) ta có : \(2x^2+3x\Leftrightarrow x\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)
vậy mệnh đề này đúng
b) ta có số nguyên có 2 dạng :
+) \(x=2a\Rightarrow x^2=4x^2⋮2\) \(\Rightarrow x=2a\) là thỏa mãn
+) \(x=2a+1\Rightarrow x^2=4a^2+4a+1⋮̸2\) \(\Rightarrow x=2a+1\) là không thỏa mãn
\(\Rightarrow x=2a⋮2\)
vậy mệnh đề này đúng
c) ta có : vì phương trình \(X^2-aX+\left(a-1\right)\)
có : \(\Delta=a^2-4\left(a-1\right)=a^2-4a+4=\left(a-2\right)^2\ge0\)
luôn có nghiệm \(\Rightarrow\) \(x+y+xy\) có thể bằng \(-1\)
\(\Rightarrow\) mệnh đề này sai
d) cái này thì theo fetmat thì phải .
\(\Rightarrow n=2\) là duy nhất
\(\Rightarrow\) mệnh đề này đúng
vậy có \(3\) mệnh đề đúng
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
a/ A đúng
\(\overline{A}:\exists x\in R,x^2< 0\)
b/ B đúng
\(\overline{B}:\forall x\in N,x\) ko phải là số nguyên tố
c/ C sai
\(\overline{C}:\forall x\in N,x⋮̸\) \(x+1\)
d/ D đúng
\(\overline{D}:\exists x\in N,n^4-n^2+1\) là số nguyên tố
e/ E sai
\(\overline{E}\) : mọi hình thang ko là hình vuông
f/ F đúng
\(\overline{F}:∄\)\(a\in R,a+1+\frac{1}{a+1}>2\)