Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.
a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)
b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)
c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)
e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)
f) Có một số thực \(x\) mà \(x^2+x+1>0\) (mệnh đề đúng)
a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)
b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)
c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)
e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)
\(\exists x\in R,x\le2\Rightarrow x^2\le4\)
\(\exists x\in R,x^2\le4\Rightarrow x\le2\)
Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)
Cảm on nhiều ạ
a) ta có \(1^2< 2.1\) \(\Rightarrow\) mệnh đề này sai
mệnh đề phủ định là : \(\exists x\in N,x^2< 2x\)
b) ta có : \(x=1\) không thỏa mãn bài toán \(\Rightarrow\) mệnh đề này sai
mệnh đề phủ định : \(\exists x\in Z,x^2-x-1\ne0\)
câu b này mk nghỉ đề sai rồi phải không , nêu đúng thì chắc là zầy
đề đúng của câu b : \(\forall x\in Z,x^2-x-1\ne0\)
bài lm :
ta có phương trình \(x^2-x-1=0\) có 2 nghiệm \(x=\dfrac{1\pm\sqrt{5}}{2}\notin Z\)
\(\Rightarrow\) mệnh đề trên là đúng
mệnh đề phủ định : \(\exists x\in Z,x^2-x-1=0\)
a) Mệnh đề \(\forall x\in\mathbb{N},x^2\ge2x\) sai vì có \(x=1\in\mathbb{N}\) mà \(1^2< 2.1\). Mệnh đề phủ định: \(\exists x\in\mathbb{N},x^2< 2x\).
b) Mệnh đề " \(\forall x\in\mathbb{Z},x^2-x-1=0\)" sai vì có số nguyên \(x=0\) mà \(x^2-x-1=-1\ne0\). Mệnh đề phủ định:
\(\exists x\in\mathbb{Z},x^2-x-1\ne0\).
Chú ý: Mệnh đề nói ở b) nếu sửa thành " \(\forall x\in\mathbb{Z},x^2-x-1\ne0\)" thì đây là mệnh đề đúng, điều này có thể chứng minh như sau:
- Với \(x\le-1\) thì \(x^2\ge1,-\left(x+1\right)\ge0\Rightarrow x^2-\left(x+1\right)\ge1\Rightarrow x^2-x-1\ne0\)
- Với \(x\ge2\) thì \(x^2-x=x\left(x-1\right)\ge2.1\Rightarrow x^2-x-1\ge1\)\(x^2-x-1\ge1\Rightarrow x^2-x-\ne0\)
- Với \(x=0,x=1\) thử trực tiếp thấy \(x^2-x-1\ne0\)
a) \(\exists x\in R:x.1\ne x\)
mệnh đề phủ định sai.
b) \(\exists x\in R:x.x\ne1\)
mệnh đề phủ định đúng.
c) \(\exists n\in Z:n\ge n^2\)
mệnh đề phủ định đúng.