K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:

\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)

\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)

\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)

\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)

\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)

Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)

Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)

1 tháng 6 2018

gọi thương khi chia đa thức A cho x + y + z là Q, ta có :

x3 + y3 + z3 + kxyz = ( x + y + z ) . Q

đẳng thức trên đúng với mọi x,y,z nên với x = 1, y = 1, z = -2 ta có :

1 + 1 + ( -2 )3 + k . ( -2 ) = ( 1 + 1 - 2 ) . Q \(\Rightarrow\)-6 - 2k = 0 \(\Rightarrow\)k = -3

với k = -3 ta có : x3 + y3 + z3 - 3xyz chia hết cho x + y + z ( thương là x2 + y2 + z2 - xy - yz - zx )

Vậy ...

10 tháng 8 2019

gọi thương khi chia đa thức A cho x + y + z là Q ta có

x^3 =y^3+z^3 +kxyzz =(x + y +z) .Q

đẳng thức trên có thể đúng với các chữ như x,y,z nên x = 1y , 1z = -2 

nên : 

=>k = - 3 ta cs : x^ +y^3 +z^3 - 3xyz chia hết cho x =y +z (thườn là x2 + y2 -xy - z - zx)

Xem lại đề

8 tháng 2 2021

Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)

Thay x = 1 vào đẳng thức trên, ta có: 

1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài

8 tháng 2 2021

Mình nghĩ là chia hết cho (x+1)2 thì mới đúng => a = -1 ( Làm tương tự như trên thay x = -1 vào đẳng thức rồi tìm a) 

3 tháng 11 2019

Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

6 tháng 11 2019

Đa thức x - 1 có nghiệm \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy 1 là nghiệm của đa thức x - 1

Để đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1 thì 1 cũng là nghiệm của đa thức x1995 - ax1994 + ax - 1

Khi đó: \(1-a+a-1=0\Leftrightarrow0=0\)(đúng)

Vậy với mọi a thì đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1

23 tháng 7 2021

( x + y + z)3 - x3 - y3 - z3=x3+y3+z3+3(a+b)(a+c)(b+c)- x3 - y3 - z3

                                              = 3(a+b)(b+c)(a+c)