Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương khi chia đa thức A cho x + y + z là Q, ta có :
x3 + y3 + z3 + kxyz = ( x + y + z ) . Q
đẳng thức trên đúng với mọi x,y,z nên với x = 1, y = 1, z = -2 ta có :
1 + 1 + ( -2 )3 + k . ( -2 ) = ( 1 + 1 - 2 ) . Q \(\Rightarrow\)-6 - 2k = 0 \(\Rightarrow\)k = -3
với k = -3 ta có : x3 + y3 + z3 - 3xyz chia hết cho x + y + z ( thương là x2 + y2 + z2 - xy - yz - zx )
Vậy ...
gọi thương khi chia đa thức A cho x + y + z là Q ta có
x^3 =y^3+z^3 +kxyzz =(x + y +z) .Q
đẳng thức trên có thể đúng với các chữ như x,y,z nên x = 1y , 1z = -2
nên :
=>k = - 3 ta cs : x^ +y^3 +z^3 - 3xyz chia hết cho x =y +z (thườn là x2 + y2 -xy - z - zx)
Xem lại đề
Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)
Thay x = 1 vào đẳng thức trên, ta có:
1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Đa thức x - 1 có nghiệm \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy 1 là nghiệm của đa thức x - 1
Để đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1 thì 1 cũng là nghiệm của đa thức x1995 - ax1994 + ax - 1
Khi đó: \(1-a+a-1=0\Leftrightarrow0=0\)(đúng)
Vậy với mọi a thì đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1
Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:
\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)
\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)
Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)
Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)