Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
x2 - x - 2 = x2 - 2x + x - 2
= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )
Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :
x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x, do đó :
+) đặt x = 2 ta có :
23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q
8 + 2a + b = 0
2a + b = -8
b = -8 - 2a (1)
+) đặt x = -1 ta có :
(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q
-1 - a + b = 0
-a + b = 1 (2)
Thay (1) vào (2) ta có :
-a - 8 - 2a = 1
<=> -3a = 9
<=> a = -3
=> b = 1 + (-3) = -2
Vậy a = -3; b = -2
Đặt \(x^4+px^2+q=\left(x^2-2x-3\right).Q\left(x\right)=\left(x-3\right)\left(x+1\right).Q\left(x\right)\)
Lấy x = -1 ta có \(1+p+q=0\Rightarrow p+q=-1\)
Thay x = 3 ta có \(81+9p+q=0\Rightarrow9p+q=-81\)
Từ đó giải ra .
Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:
\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)
\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)
Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)
Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)
để đa thức \(x^4-3x^3+3x^2+ax+b\) chia hết cho đa thức \(x^2-3x+4\) thì
đặt \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+mx+n\right)\)
\(=x^4+\left(m-3\right)x^3+\left(n+4-3m\right)x^2+\left(4m-3n\right)x+4n\)
đồng nhất với đa thức đã cho ta được
\(\left\{{}\begin{matrix}m-3=-3\\n+4-3m=3\\4m-3n=a\\4n=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\n=-1\\a=3\\b=-4\end{matrix}\right.\)
Vậy (a,b) = (3;-4)
Bạn thực hiện phép chia đa thức sẽ được dư là \(\left(p+7\right)x+q+6\)
Để có phép chia hết thì \(\left(p+7\right)x+q+6=0\left(\forall x\right)\)
\(\Leftrightarrow\hept{\begin{cases}p+7=0\\q+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}p=-7\\q=-6\end{cases}}}\)