K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Parabol y = ax2 + bx + c có:

+ Tọa độ đỉnh D là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Phương trình trục đối xứng là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

18 tháng 3 2017

y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.

+ Đỉnh của Parabol là (1 ; –1).

+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).

+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.

Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).

30 tháng 1 2019

y = –x2 + 4 có a = –1 ; b = 0 ; c = 4 ; Δ= b2 – 4ac = 0 – 4.( –1).4 = 16.

+ Đỉnh của Parabol là (0 ; 4).

+ Khi x = 0 thì y = 4. Vậy giao điểm với trục tung là A(0 ; 4).

+ Khi y = 0 thì –x2 + 4 = 0. Phương trình có hai nghiệm x = 2 hoặc x = –2.

Vậy Parabol cắt trục hoành tại hai điểm B(2 ; 0) hoặc C(–2 ;0).

26 tháng 8 2018

y = x2 – 3x + 2 có a = 1 ; b = –3 ; c = 2 ; Δ = b2 – 4ac = (–3)2 – 4.2.1 = 1.

+ Đỉnh của Parabol là Giải bài 1 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Khi x = 0 thì y = 2. Vậy giao điểm với trục tung là A(0 ; 2).

+ Khi y = 0 thì x2 – 3x + 2 = 0. Phương trình có hai nghiệm x = 2 hoặc x = 1.

Vậy giao điểm với trục hoành là B(2 ; 0) và C(1 ; 0).

5 tháng 6 2019

Đáp án D

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

5 tháng 12 2017

+ Giao điểm của parabol với trục tung:

Tại x = 0 thì y = a.02 + b.0 + c = c.

Vậy giao điểm của parabol với trục tung là A(0 ; c).

+ Giao điểm của parabol với trục hoành :

Tại y = 0 thì ax2 + bx + c = 0 (*).

Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt ⇔ Δ = b2 – 4ac > 0.

Khi Δ > 0 thì phương trình (*) có hai nghiệm là

 Giải bài 7 trang 50 sgk Đại số 10 | Để học tốt Toán 10

Tọa độ hai giao điểm là

 Giải bài 7 trang 50 sgk Đại số 10 | Để học tốt Toán 10

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).

Sửa đề: cắt trục tung tại điểm có tung độ bằng -3

Thay x=0 và y=-3 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-3\)

=>0+0+c=-3

=>c=-3

vậy: (P): \(y=ax^2+bx-3\)

Tọa độ đỉnh là I(-1;-4) nên ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)