K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

8 tháng 7 2018

Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5

⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2

TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau

TH2: Với m – 2 ≠ 0m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2

 

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau

⇔ 1 m − 2 ≠ m − 1 2 ⇔ m   –   1 m   –   2 ≠ 2 ⇔   m 2 – 3 m + 2 ≠ 2   ⇔ m 2 – 3 m   0

Suy ra m ≠ {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}

Đáp án: C

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

a: Để phương trình có nghiệm kép thì

(m-1)^2-4(m-1)(m+1)(m+3)=0 và m+3<>0

=>(m-1)[m-1-4(m^2+4m+3)]=0 và m+3<>0

=>m=1 hoặc m-1-4m^2-16m-12=0

=>m=1 hoặc \(m=\dfrac{-15\pm\sqrt{17}}{8}\)

b: Để phương trình có nghiệm duy nhất thì

m+3=0 hoặc Δ=0

=>\(m\in\left\{1;-3;\dfrac{-15\pm\sqrt{17}}{8}\right\}\)

3 tháng 5 2023

a, Th1 : \(m-1=0\Rightarrow m=1\)

\(\Rightarrow-x+3=0\\ \Rightarrow x=3\)

Th2 : \(m\ne1\)

\(\Delta=\left(-1\right)^2-4.\left(m-1\right).3\\ =1-12m+12\\=13-12m \)

phương trình có nghiệm \(\Delta\ge0\)

\(\Rightarrow13-12m\ge0\\ \Rightarrow m\le\dfrac{13}{12}\)

b, Áp dụng hệ thức vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{m-1}\\x_1x_1=\dfrac{3}{m-1}\end{matrix}\right.\)

Tổng bình phương hai nghiệm bằng 12 \(\Rightarrow x^2_1+x^2_2=12\)

\(\left(x_1+x_2\right)^2-2x_1x_2=12\\ \Leftrightarrow\left(\dfrac{1}{m-1}\right)^2-2.\left(\dfrac{3}{m-1}\right)=12\\ \Leftrightarrow\dfrac{1}{\left(m-1\right)^2}-\dfrac{6}{m-1}=12\\ \Leftrightarrow1-6\left(m-1\right)=12\left(m-1\right)^2\\ \Leftrightarrow1-6m+6=12\left(m^2-2m+1\right)\\ \Leftrightarrow7-6m-12m^2+24m-12=0\\ \Leftrightarrow-12m^2+18m-5=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9-\sqrt{21}}{12}\\m=\dfrac{9+\sqrt{21}}{12}\end{matrix}\right.\Rightarrow m=\dfrac{9+\sqrt{21}}{12}\)

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)