\(\dfrac{x-y}{-2}< x+y+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2022

Ta có: 

\(\dfrac{x-y}{-2}< x+y+1\Leftrightarrow x-y>-2\left(x+y+1\right)\\ \Leftrightarrow x-y>-2x-2y-2\\ \Leftrightarrow3x+y>-2\)

Vẽ đường thẳng \(3x+y=-2\) như sau:

O x y -2 -2/3

Thay điểm \(O\left(0;0\right)\) vào vế trái phương trình đường thẳng \(3x+y=-2\) ta có: \(0>-2\)

Vậy miền nghiệm của phương trình đã cho là nửa mặt phẳng chứa điểm O có bờ là đường thẳng \(3x+y=-2\) và không chứa đường thẳng \(3x+y=-2\)

 

 

6 tháng 10 2023

a) \(x-3y\ge0\)

loading...

6 tháng 10 2023

b) \(\dfrac{x-y}{-2}< x+y+1\)

\(\Leftrightarrow x-y>-2x-2y-2\)

\(\Leftrightarrow3x+y+2>0\)

 

loading...

6 tháng 4 2017

Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\)\(x\ne-7\)

\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên

Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)

\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)

6 tháng 10 2023

a) \(2x-y\ge0\)

loading...

6 tháng 10 2023

b) \(\dfrac{x-2y}{2}>\dfrac{2x+y+1}{3}\)

\(\Leftrightarrow3x-6y>4x+2y+1\)

\(\Leftrightarrow x+8y+1< 0\)

loading...

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).

15 tháng 4 2017

a) - x + 2 + 2(y - 2) < 2(1 - x) <=> y <

Tập nghiệm của bất phương trình là:

T = {(x, y)|x ∈ R; y < }.

Để biểu diễn tập nghiệm T trên mặt phẳng tọa độ, ta thực hiện:

+ Vẽ đường thẳng (d): y=

+ Lấy điểm gốc tọa độ O(0; 0) (d).

Ta thấy: 0 < - 0 + 2. Chứng tỏ (0; 0) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng (d) (không kể bờ) chứa gốc O(0; 0) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

29 tháng 12 2015

em moi hoc lop 6

30 tháng 12 2015

khó wa bạn ơi tick nha tí mik tìm cách giải cho nha

6 tháng 4 2017

1) b)

Phương trình trên tương đương

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)

ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)

\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(-2=x^3+4x^2-2x^2-8x-33x-132\)

\(x^3+2x^2-41x-130=0\)

\(x^3+5x^2-3x^2-15x-26x-130=0\)

\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)

\(\left(x^2-3x-26\right)\left(x+5\right)=0\)

\(\Rightarrow x=-5\)(Loại)

\(x^2-3x-26=0\)

Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác

\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)

\(x_1=\dfrac{3-\sqrt{113}}{2}\)

\(x_2=\dfrac{3+\sqrt{113}}{2}\)

Phương trình có 2 nghiệm trên

6 tháng 4 2017

5) 0<a<b, ta có: a<b

<=> a.a<a.b

<=>a2<a.b

<=>\(a< \sqrt{ab}\)(1)

- BĐT Cauchy:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)

\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)

Dấu = xảy ra khi a=b=0 mà 0<a<b

=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)

- 0<a<b, ta có: a<b<=> a+b<b+b

\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)

Từ (1), (2), (3), ta có đpcm

30 tháng 8 2019

<=> \(\hept{\begin{cases}3x=2a+2\\x-y=a\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2a+2}{3}\\y=\frac{2-a}{3}\end{cases}}}\)

theo đk: \(x< y\Leftrightarrow\frac{2a+2}{3}< \frac{2-a}{3}\Leftrightarrow2a+2< 2-a\Leftrightarrow3a< 0\Leftrightarrow a< 0\)

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.