Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến thiên động lượng:
\(\Delta p=m\left(v_1-v_2\right)=0,025\cdot\left(800-0\right)=20kg.m\)/s
Mà \(\Delta p=F\cdot t\)
\(\Rightarrow F=\dfrac{\Delta p}{t}=\dfrac{20}{2,5}=8N\)
Động lượng viên đạn bay ra khỏi nòng:
\(p=m\cdot v=0,01\cdot865=8,65kg.m\)/s
Độ biến thiên động năng:
\(\Delta p=F\cdot\Delta t=0,01\cdot10\cdot10^{-3}=10^{-4}kg.m\)/s
Chọn C.
Chọn hệ trục Ox như hình vẽ
Phương trình bảo toàn véc tơ động lượng cho hệ theo Ox
Vì trước khi bắn hệ đứng yên
Chiếu phương trình (*) lên Ox ta được: 0 = -p’1 + p’2.cos60o
Thay số ta được:
Chọn C.
Chọn hệ trục Ox như hình vẽ
Phương trình bảo toàn véc tơ động lượng cho hệ theo Ox
\(p=mv=0,01.865=8,65\)
\(F=\frac{p}{t}=\frac{8,65}{10^{-3}}=8650N\)
Vậy ................
Giả sử thời gian đạn rời khỏi nòng súng là (rất nhỏ).
Giả sử nội lực của hệ đạn + nòng súng là N.
N làm biến thiên động lượng của đạn (đề đã bỏ qua tác động của trọng trường với đạn).
Hợp lực của N và F ma sát và P làm biến thiên động lượng của nòng.
Chiếu lên phương ngang.
Thay N từ pt trên vào ta tìm được V.
Tham khảo:
m=80(g)=0,08(kg)
v0=0(m/s)
v=1000(m/s)
S=0,6(m)
Động năng của viên đạn khi bay ra khỏi nòng súng là:
Wđ=1/2mv2=1/2.0,08.10002
=40000(J)
Áp dụng định lí độ biến thiên động năng, ta có:
AF=1/2mv2−12mv20
⇔F.S=40000−0=40000
⇔F=40000/S=40000/0,6=2.105/3(N)
Tham khảo:
\(m=80(g)=0,08(g)\)
\(v_0=0 (m/s)\)
\(v=1000(m/s)\)
\(S=0,6(m)\)
Động năng của viên đạn khi bay ra khỏi nòng súng là:
\(W_đ=\dfrac{1}{2}mv^2=\dfrac{1}{2}.0,08.1000^2=40000(J)\)
Áp dụng định lí độ biến thiên động năng, ta có:
\(A_F=\dfrac{1}{2}mv^2-\dfrac{1}{2}mv^2_0\)
`<=>` \(F.S=40000-0=40000\)
`<=>` \(F=\dfrac{40000}{S}=\dfrac{4000}{0,6}=\dfrac{2.10^2}{3}(N)\)
Chọn đáp án B
Hướng dẫn:
Trước khi bắn: p 0 = 0. Do cả sung và đạn đều đứng yên
Sau khi bắn: p = m s ú n g . v s ú n g + m đ ạ n . v đ ạ n
Áp dụng định luật bảo toàn động lượng ta có:
Dấu trừ là để chỉ sung bị giật lùi
Chọn đáp án B