Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$
Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-2$
$x_1x_2=k$
$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$
Khi đó:
$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$
$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)
\(a,< =>\Delta=0\)
\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)
\(< =>k^2+2k+1-8-4k=0\)
\(< =>k^2-2k-7=0\)
\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)
b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)
\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)
a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)
\(=k^2+2k+1-4k-8\)
\(=k^2-2k-7\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow k^2-2k-7=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)
Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)
Điều kiện để có pt bậc hai có 2 nghiệm phân biệt cùng dấu là:
\(\hept{\begin{cases}\Delta'>0\\x_1.x_2=\frac{c}{a}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k^2-4k+5>0\\4k-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)^2+1>0\\k>\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow k>\frac{5}{4}\)
Giải thích nè : 1 ) a khác 0 vì phương trình bậc thì a phải khác 0 , nên a = 0 thì sẽ biến thành pt bậc nhất .
2 ) S > 0 ( S là tổng 2 nghiệm ) ; Vì tổng của 2 số dương phải lớn hơn 0 ( vd : 1 + 2 = 3 ; 0 + 6 = 6 )
3 ) \(P\ge0\) ( P là tích của 2 nghiệm ) ; Vì tích của 2 số dương phải lớn hơn hoặc bằng 0 ( vd : 4 . 5 = 20 ; 0 . 243 = 0 )
4 ) \(\Delta'>0\) vì đenta phẩy > 0 thì phương trình mới có 2 nghiệm phân biệt \(x_1;x_2\)
Ta có : ( a = k - 1 ; b = 2(k+ 1 ) ; b' = k + 1 ; c = k )
Pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}a\ne0\\S>0;P\ge0\\\Delta'>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\ne0\\-\frac{b}{a}>0;\frac{c}{a}\ge0\\b^{'^2}-ac>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k-1\ne0\\\frac{-2\left(k+1\right)}{k-1}>0;\frac{k}{k-1}\ge0\\\left(k+1\right)^2-\left(k-1\right).k>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\-2k-2>0;k-1>0;k\ge0;k-1\ge0\\k^2+2k+1-k^2+k>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1;k\ge0;k\ge1\\3k+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1\\k>-\frac{1}{3}\end{cases}}\) ( Vì k > 1 và \(k\ge0\) nên ta chỉ lấy k > 1 thôi ; và loại bỏ \(k\ge1\) vì k phải khác 1 )
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1\\k>1\end{cases}}\) ( loại bỏ k > -1/3 vì ta đã có k > 1 rồi nên không cần phải có k > -1/3 nữa )
Ta có : k < -1 có nghĩa là \(\left(-\infty;-1\right)\) trừ vô cùng đến trừ 1
: k > 1 có nghĩa là \(\left(1;+\infty\right)\) 1 đến cộng vô cùng
Lấy 2 tập hợp này giao lại với nhau :
-oo +oo -1 1
Vậy đây là một tập hợp rỗng \(\left(\varnothing\right)\)
Vậy nên k không thể xác định được .
Học tốt !
camon!