K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 9 2018
hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!
NH
0
1 tháng 12 2015
Gọi thương của phép chia F(x) cho G(x) là A(x)
Ta có
G(x)=x^2-3x+2=(x-2)(x-1)
Ta có
F(x)=G(x).A(x)
<=>x^4 -3x^3+x^2+ax+b=(x-2)((x-1).A(x)
Với x=2
=>-4+2a+b=0
<=>2a+b=4(1)
Với x=1
=>-1+a+b=0
<=>a+b=1(2)
Từ (1) và (2)
Ta có
2a+b=4 và a+b=1
giải ra =>a=3,b=-2
nhớ tick mình nha
TH
1
Lời giải:
Để $f(x)$ chia hết cho $x^2-1=(x-1)(x+1)$ thì nó phải chia hết cho $x-1$ và $x+1$
Khi đó số dư của $f(x)$ khi chia cho $x-1; x+1$ phải bằng $0$
Áp dụng định lý Bê-du về phép chia đa thức, số dư của $f(x)$ khi chia cho $x-1,x+1$ lần lượt là:
\(f(1)=1+a+b=0\)
\(f(-1)=1-a+b=0\)
Cộng theo vế: \(2+2b=0\Rightarrow b=-1\)
Thay lại vào một trong 2 phương trình thì suy ra \(a=0\)