Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐTHS đi qua $A(4;8)$ nên $y_A=ax_A+4$
$\Leftrightarrow 8=4a+4\Leftrightarrow a=1$
b. ĐTHS hàm số vừa tìm được là $y=x+4$
Với $x=0$ thì $y=0+4=4$. Ta có điểm $A(0;4)$
Với $x=1$ thì $y=1+4=5$. Ta có điểm $B(1;5)$
Nối $A,B$ ta có đths $y=x+4$
a: Vì (d)//y=2x+3 nên a=2
Vậy: y=2x+b
Thay x=1 và y=-2 vào (d), ta được:
b+2=-2
hay b=-4
Vậy: (d): y=2x-4
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-4x+3=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{6}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
d: Vì hai đường song song nên 2m-3=2
=>2m=5
hay m=5/2
- Gọi phương trình đường thẳng cần tìm có dạng : y = ax + b
- Thay tọa độ của điểm O và P và hàm số ta được hệ :
\(\left\{{}\begin{matrix}0a+b=0\\a\sqrt{3}+b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
=> Phương trình đường thẳng là : \(y=\dfrac{\sqrt{3}}{3}x\)
\(\Rightarrow Tan\alpha=a=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow\alpha=30^o\)
Vậy ...
a: Thay x=2 và y=1 vào (d), ta được:
2a-3=1
=>2a=4
=>a=2
c: y=2x-3
tan a=2
nên a=63 độ