\(f\left(x\right)=\sin x-bx+c\) nghịch biến trên toàn tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GV
21 tháng 4 2017

Ta có: \(f'\left(x\right)=\cos x-b\)

Để hàm số nghịch biến trên toàn trục số thì:

\(f'\left(x\right)=\cos x-b\le0,\forall x\)

\(\Leftrightarrow\cos x\le b,\forall x\)

\(\Leftrightarrow1\le b\)

Vậy điều kiện của b là \(b\ge1\)

14 tháng 4 2017

điều kiện cần và đủ b>=1

4 tháng 10 2017

f(x) = sinx – bx + c nghịch biến trên R nếu ta có:

f′(x) = cosx – b ≤ 0, ∀ x ∈ R.

Vì |cosx| ≤ 1| nên f′(x) ≤ 0, ∀ x ∈ R ⇔ b ≥ 1.

9 tháng 4 2019

f(x) = sinx – bx + c nghịch biến trên R nếu ta có:

f′(x) = cosx – b ≤ 0, ∀ x ∈ R.

Vì |cosx|  ≤  1| nên f′(x)  ≤  0, ∀ x ∈ R ⇔ b ≥ 1.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 3 2016

- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị

- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\) 

hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

14 tháng 11 2018

a) Tập xác định: D = R\{m}

Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:

y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2

b) Tập xác định: D = R\{m}

Hàm số nghịch biến trên từng khoảng khi và chỉ khi:

y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0

[m<1m>4[m<1m>4

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3

d) Tập xác định: D = R

Hàm số đồng biến trên R khi và chỉ khi:

y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3

23 tháng 5 2017

a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)

Mặt khác:

\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)

Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ

b) Ta có :

\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)

và :

\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)

Vậy :

\(minf\left(x\right)=f\left(0\right)=1\)

2 tháng 4 2017

a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12

f’(x) = 0 ⇔ x ∈ {-1, 2}

So sánh các giá trị:

f(x) = -3; f(-1) = 8;

f(2) = -19, f(52)=−332f(52)=−332

Suy ra:

maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]⁡f(x)=f(−1)=8minx∈[−2,52]⁡f(x)=f(2)=−19

b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.

Do đó:

maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]⁡f(x)=f(e)=e2minx∈[1,e]⁡f(x)=f(1)=0

c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:

f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)

nên:

maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)⁡f(x)=f(1)=1e

Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra

maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)⁡f(x)=f(0)=0

d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x

f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π

x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}

Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π

So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2

Suy ra:

maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2



23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số