\(\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

Ta có: \(\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}\)=\(\dfrac{a}{x-1}\)+\(\dfrac{bx+c}{x^2+1}\)

<=>\(\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}\)=\(\dfrac{a\left(x^2+1\right)+\left(bx+c\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+1\right)}\)

=>a(x2+1)+(bx+c)(x-1)=x2+2x-1

<=>ax2+a+bx2-bx+cx-c=x2+2x-1

<=>(a+b)x2+(c-b)x-(c-a)=x2+2x-1

=>\(\left\{{}\begin{matrix}a+b=1\\c-b=2\\c-a=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a+b=1\\b=c-2\\a=c-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}c-1+c-2=1\\b=c-2\\a=c-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}c=2\\b=0\\a=1\end{matrix}\right.\)

Vậy a=1,b=0,c=2

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm

19 tháng 11 2017

a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y

=>x2+2y2+ 1 ≥ 1

=>Phân thức trên luôn có nghĩa

19 tháng 11 2017

cảm ơn bạn nhoahaha

16 tháng 9 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow-3=5x\)

\(\Rightarrow5x=-3\)

\(\Rightarrow x=-\dfrac{3}{5}\)

Vậy ....

P/s : Làm bừa !

8 tháng 5 2017

Bài 1:

a) \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}>\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

{bước 1 là quy đồng bỏ mẫu, bạn chọn mẫu là BCNN của các mẫu số ở tất cả các phân thức trong BPT, phải chọn MC là BCNN vì số càng đơn giản càng dễ tính toán}

\(\Leftrightarrow2x-3+5x^2-10x>5x^2-14x+21\)

{chuyển vế}

\(\Leftrightarrow2x-10x+14x>21+3\) \(\Leftrightarrow6x>24\)

{chia cả 2 vế của bpt cho 6}

\(\Leftrightarrow x>4\)

Vậy nghiệm của BẤT phương trình là x>4

{bạn chú ý là bất phương trình chứ KHÔNG PHẢI là nghiệm của phương trình nhé}

cũng có thể kết luận thế này: Vậy S={x|x>4}

hay biểu diễn trên trục số (nếu đề yêu cầu)

{khi đã biểu diễn trên trục số thì bạn không cần phải kết luận như 2 cách trên nữa nhé, dư đấy.}

8 tháng 5 2017

1b)

\(\dfrac{6x+1}{18}+\dfrac{x+3}{12}\le\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

{tương tự: quy đồng bỏ mẫu}

\(\Leftrightarrow12x+2+3x+9\le30x+18+48-20x\)

{chuyển vế các hạng tử}

\(\Leftrightarrow15x-10x\le66-11\)\(\Leftrightarrow5x\le55\)

{chia cả 2 vế cho 5}

\(\Leftrightarrow x\le11\)

Vậy \(x\le11\)

(cách kết luận như câu a, nói rồi không nói lại nhé ^^!)