Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1/4(x-3)+2=1/5
1/4.(x-3) = 1/5-2
1/4.(x-3) = -9/5
x-3 = (-9/5):1/4
x-3 = -36/5
x = -36/5+3
x= -21/5
\(a,\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4}\)
\(\Rightarrow x=-\frac{1}{3}\)
Bạn Hồng có một tờ bìa hình chữ nhật có chiều rộng 1/5 m và chiều dài 1/4 m . bạn Hồng muốn cắt từ tấm bìa đó thành một hình chữ nhật có diện tích bằng một nửa diện tích tấm bìa và độ dài một cạnh là 1/4 m để làm hộp đồ chơi.
a) tính diện tích hình chữ nhật bạn Hồng đã cắt
b) bạn Hồng có thể cắt như thế nào ? Vẽ hình minh họa
\(\frac{1}{9}.3^4.3^x=3^7\)
\(\Leftrightarrow3^x=3^7:\frac{1}{9}:3^4=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
1)
a) \(-\frac{9}{34}:\frac{17}{4}\)
\(=-\frac{18}{289}.\)
b) \(1\frac{1}{2}.\frac{1}{24}\)
\(=\frac{3}{2}.\frac{1}{24}\)
\(=\frac{1}{16}.\)
c) \(-\frac{5}{2}:\frac{3}{4}\)
\(=-\frac{10}{3}.\)
d) \(4\frac{1}{5}:\left(-2\frac{4}{5}\right)\)
\(=\frac{21}{5}:\left(-\frac{14}{5}\right)\)
\(=-\frac{3}{2}.\)
Mấy câu sau bạn đăng ríu rít quá khó nhìn lắm.
Chúc bạn học tốt!
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
`Answer:`
`x+9/4 = 1/3-2/4 - (-1/5)- (-2/3) -(-3/4)+4/5`
`<=>x+9/4=1/3-2/4+1/5+2/3+3/4+4/5`
`<=>x=1/3-1/2+1/5+2/3+3/4+4/5-9/4`
`<=>x=(1/2+2/3)+(3/4-9/4)+(1/5+4/5)-1/2`
`<=>1-3/2+1-1/2`
`<=>2-2=0`
Vậy `x=0`