Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số = nhau
giải ra thj dài lém
a) xlđ
b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)
Vậy ...
c) tt
ta có:\(\frac{7}{2x+2}=\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)=\(\frac{7+3}{2x+2+2y-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-2}=\frac{5}{x+y-1}\)\(=\frac{5+5}{x+y+z-1+4}\)=\(\frac{10}{17-1+4}=\frac{10}{20}\)=\(\frac{1}{2}\)
từ đó bn tính ra nha
Vì: \(\left|3x-5\right|\ge0\)và: \(\left(2y+5\right)^{208}\ge0\)cùng với: \(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)( trái với đề bài )
\(\Rightarrow\)Không tồn tại \(x,y,z\)thỏa mãn đề bài
Chúc bạn học tốt !
Có: \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)với mọi x, y, z. (1)
Đề bài \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\) (2)
Từ (1) và (2) Suy ra chỉ xảy ra trường hợp: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
<=> \(3x-5=0;2y+5=0;4z-3=0\)
<=> x =5/3; y=-5/2; z =3/4
\(\frac{x}{7}=\frac{y}{5}\Rightarrow x=7k;y=5k\left(k\inℕ\right)\Rightarrow3x-2y=11k=55\Rightarrow k=5\Rightarrow x=35;y=25\)