Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: \(\left|3x-5\right|\ge0\)và: \(\left(2y+5\right)^{208}\ge0\)cùng với: \(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)( trái với đề bài )
\(\Rightarrow\)Không tồn tại \(x,y,z\)thỏa mãn đề bài
Chúc bạn học tốt !
Có: \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)với mọi x, y, z. (1)
Đề bài \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\) (2)
Từ (1) và (2) Suy ra chỉ xảy ra trường hợp: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
<=> \(3x-5=0;2y+5=0;4z-3=0\)
<=> x =5/3; y=-5/2; z =3/4
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
a)\(\frac{-1}{4}x^2y-\frac{1}{4}x^2y=-\frac{1}{2}x^2y.\)
thay x=1,y=-1 vào ta được:
\(-\frac{1}{2}.1^2.\left(-1\right)=\frac{1}{2}.\)
b)\(3x^2y^3+3x^2y^3=6x^2y^3.\)
thay x=1,y=-1 vào ta được:
\(6.1^2.\left(-1\right)^3=6.1.\left(-1\right)=-6.\)
c) \(6x^3y^4z-4x^3y^4z=2x^3y^4z.\)
Thay x=1,y=-1,z=2 vào ta được:
\(2.1^3.\left(-1\right)^4.2=2.1.1.2=4.\)
d) Thay x=1,y=-1,z=2 vào ta được:
\(1-2.\left(-1\right)^2+2^3=1-2+8=7.\)
Đầy đủ quá rồi đấy. Giữ lời hứa nha
Học tốt
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}=\frac{2+1+2}{3x+2y+z}=\frac{5}{1}=5\)
\(\Rightarrow\frac{1}{2y}=5\Rightarrow2y=\frac{1}{5}\Rightarrow y=\frac{1}{5}:2=\frac{1}{10}\)
a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
ADTCDTSBN
có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)
=> y/-3 = 5/2 => y = -15/2
x/5 = 5/2 => x = 25/2
KL:...
b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)
\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)
=> x/9 = 49/32 => x = ...
...
a, P + 3x\(^{^2}\) - 4xy = 6y\(^{^2}\) - 9xy + x\(^2\)
=> P = 6y\(^2\)- 9xy + x\(^2\)+ 4xy - 3x\(^2\)= 6y\(^2\)- 5xy - 2x\(^2\)
=> P = 6y\(^2\) - 5xy - 2x\(^2\)
b,
4y\(^2\) - 8xy - P = 5x\(^2\) - 12xy + 4y\(^2\)
=> P = 4y\(^2\) - 8xy - 5x\(^2\) + 12xy - 4y\(^2\) = 4xy - 5x\(^2\)
=> P = 4xy - 5x\(^2\)
c,
P - ( x\(^2\) - 2y\(^2\) + 3z\(^2\) ) + 3x\(^2\) - y\(^2\) + 2z\(^2\)= 2x\(^2\) - 3y\(^2\) -z\(^2\)
= P + 2x\(^2\) + y\(^2\) - z\(^2\) = 2x\(^2\) - 3y\(^2\) - z\(^2\)
=> P = 2x\(^2\) - 3y\(^2\) - z\(^2\) - 2x\(^2\) - y\(^2\) + z\(^2\)
=> P = -2y\(^2\)
x,y,z tỉ lệ với 5,4,3 => \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
=> x = 5k ; y = 4k ; z = 3k
=> \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4}{6}=\frac{2}{3}\)
Vậy P = 2/3
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)