Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Ta có:
\(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0
\\\left(4z-3\right)^{20}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=5\\2y=-5\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)
Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)
Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)
Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
Vì: \(\left|3x-5\right|\ge0\)và: \(\left(2y+5\right)^{208}\ge0\)cùng với: \(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)( trái với đề bài )
\(\Rightarrow\)Không tồn tại \(x,y,z\)thỏa mãn đề bài
Chúc bạn học tốt !
Có: \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)với mọi x, y, z. (1)
Đề bài \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\) (2)
Từ (1) và (2) Suy ra chỉ xảy ra trường hợp: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
<=> \(3x-5=0;2y+5=0;4z-3=0\)
<=> x =5/3; y=-5/2; z =3/4
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
thầy mình cho đè kia cơ