K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

\(\left(-x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x+7=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

2 tháng 9 2020

Bài 1 :

a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)

b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

Bài 2 :

a) \(x^2-2x+1=\left(x-1\right)^2\)

b) \(x^2+2x+1=\left(x+1\right)^2\)

c) \(x^2-6x+9=\left(x-3\right)^2\)

2 tháng 9 2020

1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16

b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25

2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2

(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2

x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2 

5 tháng 8 2020

a, - Đặt \(x^2+4x+8=a\) ta được :\(a^2+3xa+2x^2\)

\(=a^2+xa+2xa+2x^2\)

\(=a\left(a+x\right)+2x\left(a+x\right)\)

\(=\left(2x+a\right)\left(x+a\right)\)

- Thay lại x vào đa thức ta được :

\(\left(2x+x^2+4x+8\right)\left(x+x^2+4x+8\right)\)

\(=\left(x^2+6x+8\right)\left(x^2+5x+8\right)\)

b, - Đặt \(x^2+x+1=a\) ta được :\(a\left(a+1\right)-12\)

\(=a^2+a-12\)

\(=a^2+\frac{1}{2}.2.a+\frac{1}{4}-\frac{49}{4}\)

\(=\left(a+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)

\(=\left(a+\frac{1}{2}+\frac{7}{2}\right)\left(a+\frac{1}{2}-\frac{7}{2}\right)\)

\(=\left(a+4\right)\left(a-3\right)\)

- Thay lại x vào đa thức ta được :

\(\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

c, - Đặt \(x^2+8x+7=a\) ta được : \(a\left(a+8\right)+15\)

\(=a^2+8a+15\)

\(=a^2+3a+5a+15\)

\(=a\left(a+3\right)+5\left(a+3\right)\)

\(=\left(a+3\right)\left(a+5\right)\)

- Thay lại x vào đa thức ta được :

\(\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

d, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+2x+5x+10\right)\left(x^2+3x+4x+12\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

- Đặt \(x^2+7x+10=a\) ta được : \(a\left(a+2\right)-24\)

\(=a^2+2a-24\)

\(=a^2-4a+6a-24\)

\(=a\left(a-4\right)+6\left(a-4\right)\)

\(=\left(a+6\right)\left(a-4\right)\)

- Thay lại x vào đa thức ta được :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

2 tháng 6 2016

giúp mình với ah

3 tháng 6 2016

a. \(A=9x^2-30x+25-4x^2+12x-9+16-4x^2\)

\(=x^2-18x+32\)

b. \(B=25x^2-70x+49-\left(4x+3\right)\left(4x^2+12x+9\right)-3x^3+9x^2+5x-15\)

\(=25x^2-70x+49-\left(16x^3+48x^2+36x-12x^2-36x-27\right)-3x^3+9x^2+5x-15\)

\(=-19x^3+-2x^2-65x+61\)

Chúc em học tốt ^^

14 tháng 7 2019

Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .

1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)

\(=>A=-12x+16\)

2) \(=>B=8x^3+27-8x^3+2=29\)

3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)

4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)

5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)

\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)

\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)

6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)

k cho mik nha , 

Bài 5:

a) Ta có: \(x^4+4\)

\(=x^4+4\cdot x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)

d) Ta có: \(x^8+x^4+1\)

\(=x^8+x^4+x^6-x^6+1\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

g) Ta có: \(x^4+2x^2-24\)

\(=x^4+6x^2-4x^2-24\)

\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(a^4+4b^4\)

\(=a^4+4a^2b^2+4b^4-4a^2b^2\)

\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

30 tháng 8 2021

ý e đâu

 

5 tháng 8 2020

Bài 9 : Tìm x, biết :

a, (x - 2)(x - 3) + (x - 2) - 1 = 0

\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy x ={1; 3}

b, (x + 2)2 - 2x(2x + 3) = (x + 1)2

\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x

\(\Leftrightarrow6x^3+x^2-2x=0\)

\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)

\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)

\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)