K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=36x^2\)(1)

Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:

\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)

b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2=100^2=10000\)

30 tháng 10 2020

Bài 1.

[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >

= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2

Đặt t = x - y

bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2

           = 4t5 : t2 + 2t3 : t2 - 3t2 : t2

           = 4t3 + 2t - 3

           = 4( x - y )3 + 2( x - y ) - 3

Bài 2.

5x( x - 2 ) + 3x - 6 = 0

⇔ 5x( x - 2 ) + 3( x - 2 ) = 0

⇔ ( x - 2 )( 5x + 3 ) = 0

⇔ x - 2 = 0 hoặc 5x + 3 = 0

⇔ x = 2 hoăc x = -3/5

Bài 3.

A = x2 - 6x + 2023

= ( x2 - 6x + 9 ) + 2014

= ( x - 3 )2 + 2014 ≥ 2014 ∀ x

Dấu "=" xảy ra khi x = 3

=> MinA = 2014 <=> x = 3

Bài 4.

B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )

= [ ( 3x + 5 ) - ( 3x - 5 ) ]2

= ( 3x + 5 - 3x + 5 )2

= 102 = 100

Vậy B không phụ thuộc vào x ( đpcm )

Bài 6.

C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152

= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1

= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1

= 4029 + ... + 9 + 5 + 1

\(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)

= 2 031 120

24 tháng 6 2015

hình như lớp 8 mà mình bấm bị lộn ai bik chỉ mình vs

 

11 tháng 8 2016

a)  3x( 2x + 3) -(2x+5)(3x-2)=8

<=> 6x^2+9x-6x^2+4x-15x+10=8

<=> -2x+10=8

<=> -2x= 8-10 = -2

<=> x=1

b)  (3x-4)(2x+1)-(6x+5)(x-3)=3

<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3

<=> -8x+11=3

<=> -8x= -8

<=> x=1

c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6

<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6

<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6

<=> 12x^2+ 26x-10-12x^2-18x+12=6

<=> 8x+2=6

<=> 8x=4

<=> x= 1/2

d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27

<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27

<=> 3x2y+3xy2-(x+y)3+y3=27

<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27

<=> -x3=27

<=> x= \(-\sqrt[3]{27}\)= -3

1: \(=-3x^3y\cdot2x^2y^3+3x^3y\cdot xy^2+3x^3y\cdot\dfrac{1}{3}\cdot5\)

\(=-6x^5y^4+3x^4y^3+5x^3y\)

2: \(=\dfrac{1}{3}x\cdot3x-\dfrac{1}{3}x\cdot6+2\cdot3x-6\cdot2\)

\(=x^2-2x+6x-12=x^2+4x-12\)

12 tháng 8 2023

c) \(x^6-3x^4y+3x^2y^2-y^3\)

\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot y+3\cdot x^2\cdot y^2-y^3\)

\(=\left(x^2-y\right)^3\)

d) \(\left(x-y\right)^3+\left(x-y\right)^2+\dfrac{1}{2}\left(x-y\right)+\dfrac{1}{27}\)

\(=\left(x-y\right)^3+3\cdot\dfrac{1}{3}\cdot\left(x-y\right)^2+3\cdot\left(\dfrac{1}{3}\right)^2\cdot\left(x-y\right)+\left(\dfrac{1}{3}\right)^3\)

\(=\left(x-y+\dfrac{1}{3}\right)^3\)

7 tháng 7 2018

Đề này đúng ra là tính nhé.

a. (3x-2)^2 +(3x+2)^2 + 2(9x^2) - 4 tại x= -1/3

Câu a sai đề nữa nè hum

Ta có:

\((3x-2)^2 + (3x+2)^2 + 2(9x^2-4) \)

\(= (9x^2 - 6x+4) + (9x^2+6x+4) + 2(9x^2 - 4)\)

\(= 2(9x^2+4) + 2(9x^2 -4) = 2.2.9x^2 \)

\(=36\cdot\dfrac{1}{9}=4\)

b. (x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2 tại x= 101

Ta có:

\((x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2\)

\(= [(x+y-7) - (y-6)]^2\)

\(= (x - 1)^2 \)

\(=100^2=10000\)

c.4x^2 - 20x +27 tại 52,5

Ta có:

\(4x^2 - 20x +27\)

\(=(2x)^2 -2.2x.5 + 25 + 2 \)

\(=(2x-5)^2 + 2 \)

\(=100^2+2=10002\)

7 tháng 12 2021

\(5xy\left(2x^3y^2-7xy+3y\right)=10x^4y^3-35x^2y^2+15xy^2\\ \left(-6x^6+15x^2-4x^4\right):3x^2=-2x^4+5-\dfrac{4}{3}x^2\\ \left(x^2-y^2-12x+36\right):\left(x+y-6\right)\\ =\left[\left(x-6\right)^2-y^2\right]:\left(x+y-6\right)\\ =\left(x-y-6\right)\left(x+y-6\right):\left(x+y-6\right)\\ =x-y-6\)

7 tháng 12 2021

Mơn bn nhe (◍•ᴗ•◍)❤

28 tháng 12 2014

​1 chắc chắn 100% luon !

28 tháng 12 2014

Ta có :\(x^6+3x^2y^2+x^6=\left(x^6+y^6\right)+3x^2y^2=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)+3x^2y^2\)

\(=x^4-x^2y^2+y^4+3x^2y^2\) ( Vì \(x^2+y^2=1\) )

\(=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=1.\)