
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1. x2 - 2xy + y2 - ( y + 1 )2 = ( x - y )2 - ( y + 1)2
= \(\left[\left(x-y\right)-\left(y+1\right)\right]\left[\left(x-y\right)+\left(y+1\right)\right]\)
= (x-2y-1) ( x +1 )
5. x6 - y6 = (x3)2 - (y3)2
= ( x3 - y3 ) ( x3 + y3 )
=\(\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)

Bài 1. Rút gọn:
\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)
\(=x-x^2+6\left(x^2+6x+9\right)\)
\(=x-x^2+6x^2+36x+54\)
\(=5x^2+37x+54\)
\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)
\(=\left(4-9x^2\right)-\left(x^2-25\right)\)
\(=-10x^2+29\)
\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)
\(=3x^2+15x+x+5-x^2+1\)
\(=2x^2+16x+6\)
\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)
\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)
\(=4x+6-6x^2-9x+6x^2-12x+6\)
\(=-17x+12\)
\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)
\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)
\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)
\(=-8x^2-5x\)
Bài 2:
a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)
=-xy
b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

\(g,x^2-2xy+y^2-9z^2=\left(x-y\right)^2-\left(3z\right)^2\)\(=\left(x-y+3z\right)\left(x-y-3z\right)\)
\(h,5x^4-20x^2=5x^2\left(x^2-4\right)=5x^2\left(x-2\right)\left(x+2\right)\)
\(i,7x^2-7y^2-14x+14y=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=\left(x-y\right)\left(7x+7y-14\right)=7\left(x-y\right)\left(x+y-2\right)\)
\(k,x^2+8x+3x+24=x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x+3\right)\)
\(m,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(n,x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)\)

\(a,\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2.\left(x-1\right)}+\dfrac{-2x}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)}{2.\left(x-1\right).\left(x+1\right)}+\dfrac{\left(-2x\right).x}{x.\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)-2x^2}{x.\left(x+1\right)\left(x-1\right)}\)
b: \(=\dfrac{y^2-12y+24}{6y\left(y-6\right)}\)
c: \(=\dfrac{12-2x+3x}{2x\left(x+3\right)}=\dfrac{x+12}{2x\left(x+3\right)}\)

g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(5x^4-20x^2\)
\(=5x^2\left(x^2-4\right)\)
\(=5x^2\left(x-2\right)\left(x+2\right)\)
i) \(7x^2-7y^2-14x+14y\)
\(=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=7\left(x-y\right)\left(x+y-2\right)\)
k) \(x^2+8x+24+3x\)
\(=x^2+11x+24\)
\(=x^2+3x+8x+24\)
\(=x\left(x+3\right)+8\left(x+3\right)\)
\(=\left(x+3\right)\left(x+8\right)\)
m) \(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
n) \(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

a) \(\dfrac{2}{x+3}+\dfrac{1}{x}\) [ MTC: x(x+3) ]
\(=\dfrac{x.2}{x\left(x+3\right)}+\dfrac{1\left(x+3\right)}{x\left(x+3\right)}\)
\(=\dfrac{2x+x+3}{x\left(x+3\right)}\)
\(=\dfrac{3x+3}{x\left(x+3\right)}\)
\(=\dfrac{3\left(x+1\right)}{x\left(x+3\right)}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)
\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\) \(\left[MTC:2\left(x-1\right)\left(x+1\right)\right]\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-2x.2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-4x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x^2+2x+1\right)-4x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x^2-2x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)}{2\left(x+1\right)}\)
a) Ta có :
\(\dfrac{2}{x+3}+\dfrac{1}{x}=\dfrac{2x+x+3}{x\left(x+3\right)}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)-2x.2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{-3x+1}{2\left(x-1\right)\left(x+1\right)}\)
c) \(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)
\(=\dfrac{y^2-12+36}{6y\left(y-6\right)}=\dfrac{y^2-24}{6y\left(y-6\right)}\)
d) \(\dfrac{6+x}{x+3x}+\dfrac{3}{2x+6}=\dfrac{6+x}{4x}+\dfrac{3}{2\left(x+3\right)}\)
\(=\dfrac{\left(6+x\right)\left(2x+6\right)+12x}{8x\left(x+3\right)}\)(Đề câu này phải sửa thành\(\dfrac{6+x}{x^2+3x}chứ\)) ???

6) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
7) \(x^2-3x-y^2-3y=\left(x-y-3\right)\left(x+y\right)\)
8) \(x^2-2xy+y^2-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)
9) \(4x^2-y^2+4x+1=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)
10) \(x^3-x+y^3-y=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
6) = (3x)2 + 2.(3x)y +y2 = (3x + y)2
7) = (x-y)(x+y)- 3(x+y) = (x+y)(x-y-3)
8) = (x-y)2 - 42 = (x-y-4)(x-y+4)
9) = ( 4x2 + 4x +1 ) - y2 = (2x+1)2 - y^2 = (2x+1-y)(2x+1+y)
10) =(x3+y3) - (x+y) = (x+y)(x2+xy+y2) - (x+y) = (x+y)(x2+xy+y2-1)
k mk đi nha