K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

            Bài làm :

Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :

\(\frac{x}{5}=\frac{y}{6}=\frac{x+y}{5+6}=\frac{44}{11}=4\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{y}{6}=4\end{cases}\Rightarrow}\hept{\begin{cases}x=20\\y=24\end{cases}}\)

Mà ta có :

\(\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{24}{8}=\frac{z}{11}\Rightarrow z=33\)

Vậy :

\(A=x-y-2z=20-24-2\times33=-70\)

10 tháng 9 2020

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{11}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{40}=\frac{y}{48}\\\frac{y}{48}=\frac{z}{66}\end{cases}}\Leftrightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)

Theo tính chaasts dãy tỉ số bằng nhau

\(\frac{x}{40}=\frac{y}{48}=\frac{z}{66}=\frac{x+y-z}{40+48-66}=\frac{44}{22}=2\)

\(\hept{\begin{cases}x=40.2=80\\y=48.2=96\\z=66.2=132\end{cases}}\)

Ta có \(A=x-y-2z\Leftrightarrow A=80-96-2.132=-280\)

Vậy giá trị biểu thức A là -280

10 tháng 9 2020

Ta có\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{11}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{33}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)

Lạ có x + y = 44

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y}{20+24}=\frac{44}{44}=1\)

=> \(\hept{\begin{cases}x=20\\y=24\\z=33\end{cases}}\)

Khi đó A = x - y - 2z = 20 - 24 - 2.33 = -70

10 tháng 9 2020

Chúng ta có đồng thời tổng số và tỉ số của x và y ---> Bài toán tổng tỉ cơ bản

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\Rightarrow x=\frac{5}{6}y\\x+y=44\end{cases}}\)---> Tất nhiên là thế x ở trên vào phía dưới roi:

\(\Rightarrow x+\frac{5}{6}x=44\Leftrightarrow x=24\)--->Từ đây có rất nhiều cách tính y:

\(\Rightarrow y=44-x=20\)---> Ta có tỉ số giữa y và z nên rõ ràng tính z rất dễ:

\(\frac{y}{8}=\frac{z}{11}\Rightarrow z=\frac{11}{8}y=\frac{11}{8}.24=33\)

Giờ thì thế hết x,y,z vào tính A: \(A=x-y-2z=24-20-2.33=-70\)---> Xong !!

9 tháng 9 2020

\(\frac{x}{5}=\frac{y}{6}\: \Leftrightarrow x=\frac{5}{6}y .\)

\(\frac{y}{8}=\frac{z}{11}\)\(\Leftrightarrow z=\frac{11}{8}y\)

Có: x+y-z=44 \(\Leftrightarrow\frac{5}{6}y+y-\frac{11}{8}y=44\)\(\Leftrightarrow\frac{11}{24}y=44\)

\(\Leftrightarrow y=96\)\(\Rightarrow\hept{\begin{cases}x=80\\z=132\end{cases}}\)

A=x-y-2z=80-96-2.132=-280

Bạn tham khảo nha

10 tháng 9 2020

Ta có : \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{11}\)

+) \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}\)(1)

+) \(\frac{y}{8}=\frac{z}{11}\Rightarrow\frac{y}{48}=\frac{z}{66}\)(2)

Từ (1) và (2) => \(\frac{x}{40}=\frac{y}{48}=\frac{z}{66}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{40}=\frac{y}{48}=\frac{z}{66}=\frac{x+y-z}{40+48-66}=\frac{44}{22}=2\)

=> \(\hept{\begin{cases}\frac{x}{40}=2\\\frac{y}{48}=2\\\frac{z}{66}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=80\\y=96\\z=132\end{cases}}\)

Lại có : A = x - y - 2z = 80 - 96 - 2.132 = -280

Vậy A = -280

2 tháng 10 2016

Ta có : x/3=y/2      = x/12 = y /8 

         y/4=z/5       = y/8 = z/10 ( mình biến đổi sao cho y có mẫu chung là 8 ý bạn )

   => x/12=y/8=z/10 = -x-y+z/ -12-8+10 

                               = -10/-10 =1

=> x = 1.12=12

     y=1.8=8

    z=1.10=10

        

   

10 tháng 8 2020

Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)

Khi đó x + y + z = 18 

<=> 3k + 1 + 4k + 2 + 5k + 3 = 18

=> 12k + 6 = 18

=> 12k = 12

=> k = 1

=> x = 4 ; y = 6 ; z = 8

11 tháng 8 2020

                                                  Bài giải

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)

\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)