Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(x^2-2x+5-\left(x-7\right)\left(x+2\right)\)
\(=x^2-2x+5-x^2-2x+7x-14\)
\(=3x-9\)
2: Ta có: \(-5x\left(x-5\right)+\left(x-3\right)\left(x^2-7\right)\)
\(=-5x^2+25x+x^3-7x-3x^2+21\)
\(=x^3-8x^2+18x+21\)
3: Ta có: \(x\left(x^2-x-2\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^3-x^2-2x-x^2-4x+5\)
\(=x^3-2x^2-6x+5\)
1.
$(x-2)(x-5)=(x-3)(x-4)$
$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)
Vậy pt vô nghiệm.
2.
$(x-7)(x+7)+x^2-2=2(x^2+5)$
$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$
$\Leftrightarrow -51=10$ (vô lý)
Vậy pt vô nghiệm.
3.
$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$
$\Leftrightarrow 4x+10=-8$
$\Leftrightarrow 4x=-18$
$\Leftrightarrow x=-4,5$
4.
$(x+1)^2=(x+3)(x-2)$
$\Leftrightarrow x^2+2x+1=x^2+x-6$
$\Leftrightarrow x=-7$
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
a: \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
=>1+3x-6=3-x
=>3x-5=3-x
=>4x=8
hay x=2(loại)
b: \(\Leftrightarrow8-x-8\left(x-7\right)=-26\)
=>8-x-8x+56=-26
=>-9x+64=-26
=>-9x=-90
hay x=10(nhận)
c: \(\dfrac{1}{x-2}+\dfrac{1}{x-3}=\dfrac{2}{x-1}\)
\(\Leftrightarrow\dfrac{x-3+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=2\left(x^2-5x+6\right)\)
\(\Leftrightarrow2x^2-5x-2x+5=2x^2-10x+12\)
=>-7x+10x=12-5
=>3x=7
hay x=7/3(nhận)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
Bài 1
1.(x-3)(x+2)-x(x-7)=15
\(\Leftrightarrow x^2+2x-3x-6-x^2+7x=15\)
\(\Leftrightarrow-6+6x=15\)
\(\Leftrightarrow6x=15+6\) =21
\(\Rightarrow x=\dfrac{21}{6}=3,5\)
2.(x-5)(x+5)+x(3-x)=20
\(\Leftrightarrow x^2-25+3x-x^2=20\)
\(\Leftrightarrow-25+3x=20\)
\(\Leftrightarrow3x=20+25=45\)
\(\Rightarrow x=\dfrac{45}{3}=15\)
3.(x-7)2-x(2+x)=-7
\(\Leftrightarrow x^2-14x+49-2x-x^2=-7\)
\(\Leftrightarrow-16x+49=-7\)
\(\Leftrightarrow-16x=-7-49=-56\)
\(\Rightarrow x=\dfrac{-56}{-16}=\dfrac{7}{2}=3,5\)
Tiếp bài 1
4.(x-4)2-(x+4)(x-4)=-16
\(\Leftrightarrow x^2-8x+16-x^2-16=-16\)
\(\Leftrightarrow-8x=-16\)
\(\Rightarrow x=\dfrac{-16}{-8}=2\)
5.(x-5)(x+5)-x(2-3x)=4x2-7
\(\Leftrightarrow x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-4x^2-2x=-7+25\)
\(\Leftrightarrow-2x=18\)
\(\Rightarrow x=\dfrac{18}{-2}=-9\)
( x + 5 )2 = ( x + 3 )( x - 7 )
⇔ x2 + 10x + 25 = x2 - 4x - 21
⇔ x2 + 10x - x2 + 4x = -21 - 25
⇔ 14x = -46
⇔ x = -23/7
\(\left(x+5\right)^2=\left(x+3\right)\left(x-7\right)\)
\(\Leftrightarrow x^2+10x+25=x^2-7x+3x-21\)
\(\Leftrightarrow x^2+10x+25-x^2+4x+21=0\)
\(\Leftrightarrow14x+46=0\)
\(\Leftrightarrow x=\frac{-23}{7}\)