![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-5\right)\left(4-x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-5>0\\4-x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>5\\x>4\end{matrix}\right.\)\(\Rightarrow x>5\)
\(\left\{{}\begin{matrix}x-5< 0\\4-x< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 5\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 4\)
Tập nghiệm: x > 5 ; x < 4
b) \(x^2-2x\ge0\)
\(\Leftrightarrow x\left(x-2\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\)\(\Rightarrow x\ge2\)
\(\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\)\(\Rightarrow x\le0\)
Tập nghiệm: x >= 2 ; x<= 0
![](https://rs.olm.vn/images/avt/0.png?1311)
4: \(\left|x^3-64\right|+\left|15-4y\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-64=0\\15-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{15}{4}\end{matrix}\right.\)
6: |7x-11|>5
=>7x-11>5 hoặc 7x-11<-5
=>7x>16 hoặc 7x<6
=>x>16/7 hoặc x<6/7
8: |2x+12|<4
=>2x+12>-4 và 2x+12<4
=>2x>-16 và 2x<-8
=>-8<x<-4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x-1\right)\left(x+2\right)\le0\)
th1 :
\(\hept{\begin{cases}x-1\ge0\\x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le-2\end{cases}}\Rightarrow loai}\)
th2 :
\(\hept{\begin{cases}x-1\le0\\x+2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Rightarrow}-2\le x\le1}\)
\(b,\left(x-5\right)\left(3-x\right)>0\)
th1 :
\(\hept{\begin{cases}x-5>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x< 3\end{cases}\Rightarrow}loai}\)
th2 :
\(\hept{\begin{cases}x-5< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 5\\x>3\end{cases}\Rightarrow}3< x< 5}\)
c tương tự nha em
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử : \(\frac{x+1}{x+2}>\frac{x}{x+1}\left(ĐKXĐ:x\ge0\right)\)
=> \(\left(x+1\right)^2>x\left(x+2\right)\)
=> \(x^2+2x+1>x^2+2x\)
=> \(x^2+2x+1-x^2-2x>0\)
=> \(1>0\) ( hợp lý )
Suy ra \(\frac{x+1}{x+2}>\frac{x}{x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Vì \(\left(x+5\right)\left(3-x\right)\ge0\) nên sẽ có 2 TH xảy ra:
TH1: \(x+5\ge0;3-x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x+5\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-5\\x\le3\end{matrix}\right.\Rightarrow x\in\left\{3;2;1;0;-1;-2;-3;-4;-5\right\}\)
TH2: \(x+5< 0;3-x< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x+5< 0\\3-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -5\\x>3\end{matrix}\right.\Rightarrow\)vô lý (loại)
Vậy \(x\in\left\{3;2;1;0;-1;-2;-3;-4;-5\right\}\)thỏa mãn đề bài