\(^2\)-(x+1).(x+1)=16

tìm x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

\(\left(x+4\right)^2-\left(x+1\right)\left(x+1\right)=16.\)

\(\Leftrightarrow x^2+8x+16-x^2-2x-1=16.\)

\(\Leftrightarrow6x+15=16.\Leftrightarrow x=\dfrac{1}{6}.\)

6 tháng 7 2017

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x\right)^2-3^2=0\)

\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{3}{5}\end{cases}}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x+17=16\)

\(\Leftrightarrow8x=-1\)

\(\Leftrightarrow x=-\frac{1}{8}\)

6 tháng 7 2017

a) ko hiểu đề bài

b) Ta có (x + 4)2 - (x + 1)(x - 1) = 16

<=> x2 + 8x + 16 - (x2 - 1) = 16

<=>  x2 + 8x + 16 - x2 + 1 = 16

<=> 8x + 17 = 16

=> 8x = -1

=> x = \(-\frac{1}{8}\)

3 tháng 1 2018

\(=\left(\dfrac{1}{1-x}+\dfrac{1}{1+x}\right)+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)

\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{32}{1-x^{32}}\)

4 tháng 12 2017

bn kt lại đề giúp mk , mk nghĩ mấu phải là x2 - 1 ; x4 - 1 ; x16 - 1

4 tháng 12 2017

Sửa đề

\(\dfrac{1}{x-1}-\dfrac{1}{x+1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)

\(=\dfrac{2}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)

\(=\dfrac{4}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)

\(=\dfrac{8}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)

\(=\dfrac{16}{x^{16}-1}-\dfrac{16}{x^{16}+1}=\dfrac{32}{x^{32}-1}\)

7 tháng 12 2018

\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^5+1}-\frac{16}{x^{16}+1}\)

\(=\frac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2}{x^2-1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2\left(x^2+1\right)-2.\left(x^2-1\right)}{x^2-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2x^2+2-2x^2+2}{\left(x^2+1\right)\left(x^2-1\right)}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4}{x^4-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4\left(x^4+1\right)-4\left(x^4-1\right)}{\left(x^4-1\right)\left(x^4+1\right)}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8}{x^8-1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8.\left(x^8+1\right)-8\left(x^8-1\right)}{\left(x^8-1\right)\left(x^8+1\right)}-\frac{16}{x^{16}+1}\)

\(=\frac{16}{x^{16}-1}-\frac{16}{x^{16}+1}\)

\(=\frac{16.\left(x^{16}+1\right)-16.\left(x^{16}-1\right)}{\left(x^{16}-1\right)\left(x^{16}+1\right)}\)

\(=\frac{32}{x^{32}-1}\)

26 tháng 3 2020

Bài 2:

\(A=x^2+2x+2012\)

 \(=\left(x^2+2x+1\right)+2011\)

\(=\left(x+1\right)^2+2011\)

Ta có: \(\left(x+1\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)

Hay \(A\ge2011,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy Min A=2011 tại x=-1

26 tháng 3 2020

làm chuẩn đấy

30 tháng 1 2019

a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)

\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow x=\frac{3}{2}\)

b) làm tương tự nhé