\(\frac{1}{x-1}\) \(-\)\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^5+1}-\frac{16}{x^{16}+1}\)

\(=\frac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2}{x^2-1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2\left(x^2+1\right)-2.\left(x^2-1\right)}{x^2-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{2x^2+2-2x^2+2}{\left(x^2+1\right)\left(x^2-1\right)}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4}{x^4-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{4\left(x^4+1\right)-4\left(x^4-1\right)}{\left(x^4-1\right)\left(x^4+1\right)}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8}{x^8-1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)

\(=\frac{8.\left(x^8+1\right)-8\left(x^8-1\right)}{\left(x^8-1\right)\left(x^8+1\right)}-\frac{16}{x^{16}+1}\)

\(=\frac{16}{x^{16}-1}-\frac{16}{x^{16}+1}\)

\(=\frac{16.\left(x^{16}+1\right)-16.\left(x^{16}-1\right)}{\left(x^{16}-1\right)\left(x^{16}+1\right)}\)

\(=\frac{32}{x^{32}-1}\)

Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)

\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)

\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)

\(=\frac{32}{1-x^{32}}\)

27 tháng 11 2016

\(A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)

\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{32}{1-x^{32}}\)

31 tháng 8 2020

a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)

c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)

d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)

31 tháng 8 2020

( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64

( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3

( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3

( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27

HĐT số 6 + 7 bạn nhé ^^

a, \(\frac{6x+1}{x^2+7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)

\(11x^3-31x^2-72x-240=3\left(x+2\right)\left(x+5\right)\left(x-2\right)\)

\(11x^3-31x^2-72x-240-3\left(x+2\right)\left(x+5\right)\left(x-2\right)=0\)

\(8x^3-46x^2-60x-180=0\)

=> vô nghiệm 

16 tháng 4 2020

b) \(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\left(x\ne0;x\ne\pm2\right)\)

\(\Leftrightarrow\frac{2x}{\left(x-2\right)\left(x+2\right)x}-\frac{\left(x+2\right)\left(x-1\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x}{x\left(x-2\right)\left(x+2\right)}-\frac{x^2+x-2}{x\left(x-2\right)\left(x+2\right)}+\frac{x^2+2x-8}{x\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x-x^2-x+2+x^2+2x-8}{x\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{3x-6}{x\left(x-2\right)\left(x+2\right)}=0\)

=> 3x-6=0

<=> x=2 (ktm)

Vậy pt vô nghiệm

21 tháng 1 2018

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)

\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)

\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)

\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)

\(\Rightarrow2\left(2x\right)=16\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

vậy \(x=4\)

\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)

\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)

\(\Rightarrow6x+1+5x-5=3x-6\)

\(\Rightarrow11x-3x=-6+4\)

\(\Rightarrow8x=-2\)

\(\Rightarrow x=\frac{-1}{4}\)

3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)

\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)

\(\Rightarrow3x^2-3x=-4+4\)

\(\Rightarrow3x\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)