Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+9x=0\)
<=> \(x\left(x^2+9\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)
<=> \(x=0\)
\(9x^2-4-2\left(3x-2\right)^2=0\)
<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)
<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)
<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)
<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)
<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)
<=> \(3\left(3x-2\right)\left(2-x\right)=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
\(\left(x^3-x^2\right)-4x+8x-4=0\)
<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)
<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x^2+4\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)
<=> \(x=1\)
\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)
<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)
<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)
<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)
<=> \(5x-2+3x-6=-4\)
<=> \(8x-8=-4\)
<=> \(8\left(x-1\right)=-4\)
<=> \(x-1=-\frac{1}{2}\)
<=> \(x=-\frac{3}{2}\)
a) \(x^2-2x-15\)
\(\Leftrightarrow x^2-2x+1-16\)
\(\Leftrightarrow\left(x-1\right)^2-4^2\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\)
\(a,x^2-2x-15=\left(x^2-2x+1\right)-16.\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-5\right)\left(x+3\right)\)
a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)
b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)
c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)
\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)
e)\(6x^3-17x^2+14x-3\)
Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)
\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)
\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)
Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)
Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)
h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)
a) x4 - 10x3 - 15x2 + 20x + 4
= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4
= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)
= (x + 2)(x3 - 12x2 + 9x + 2)
b)
2x4 - 5x3 - 27x2 + 25x + 50
= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)
= (x - 2)(2x3 - x2 - 25x - 25)
c)\(3x^4+6x^3-33x^2-24x+48\)
\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)
\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)
\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)
\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)
\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)
\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)
\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)
Câu 1:
ĐKXĐ: \(x\notin\left\{0;5\right\}\)
\(\dfrac{x^3-10x^2+25x}{x^2-5x}=0\)
Suy ra: \(x\left(x^2-10x+25\right)=0\)
=>x(x-5)2=0
=>x=0(loại) hoặc x=5(loại)
a) \(x^2-5x+3x-15=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
b) \(5x^2y^3\left(1-5xy+2x\right)\)
c) \(6y\left(2x^2-3xy-5y\right)\)
\(\frac{6x-3}{5x^2+x}\cdot\frac{25x^2+10x+1}{1-8x^3}\)
\(=\frac{3\left(2x-1\right)}{x\left(5x+1\right)}\cdot\frac{\left(5x+1\right)^2}{\left(1-2x\right)\left(1+2x+4x^2\right)}\)
\(=-\frac{3\left(5x+1\right)}{x\left(1+2x+4x^2\right)}\)
\(\frac{6x-3}{5x^2+x}.\frac{25x^2+10x+1}{1-8x^3}\)
\(=\frac{3\left(2x-1\right)\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}\)
\(=-\frac{3\left(5x+1\right)}{x\left(1+2x+4x^2\right)}\)
\(x^4-10x^3+25x^2=36\)
➜\(x^4-10x^3=25x^2-36=0\)
➜\(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
➜\(\left(x-3\right)\left(x^3-7x^2+x+12\right)=0\)
➜\(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)
➜\(\left[{}\begin{matrix}x-3=0\\x-2=0\\x+1=0\\x-6=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)
Vậy..................................................
Ta có: \(x^4-10x^3+25x^2=36\Leftrightarrow x^4-10x^3+25x^2-36=0\Leftrightarrow x^4+x^3-11x^3-11x^2+36x^2-36=0\)
\(\Leftrightarrow x^3\left(x+1\right)-11x^2\left(x+1\right)+36\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-11x^2+36x-36\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=3\\x=6\end{matrix}\right.\)