Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-2\right)-x+2=0\)
\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
\(B1:\)
\(3x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
\(A=x^2-6x+15\)
\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )
\(A=\left(x-3\right)^2+6\)
vì ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge6\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin = 6 <=> x = 3
\(B=2x^2-10x+8\)
\(B=2\left(x^2-5x+4\right)\)
\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)
\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)
\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)
Vì 2( x - 5/2 )2 luôn >= 0 với mọi x
\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy Bmin = -9/2 <=> x = 5/2
a: \(=\dfrac{3\left(x-2\right)}{\left(x-2\right)^3}=\dfrac{3}{\left(x-2\right)^2}\)
b: \(=\dfrac{x^2\left(x+2\right)}{\left(x+2\right)^3}=\dfrac{x^2}{\left(x+2\right)^2}\)
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
\(\frac{2}{\left(x+3\right)\left(x+1\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}-\frac{2}{x+3}+\frac{2}{x+3}-\frac{2}{x+5}+\frac{2}{x+5}-\frac{2}{x+7}=\frac{2}{9}\)
\(\frac{2}{x+1}-\frac{2}{x+7}=\frac{2}{9}\\ \Rightarrow\frac{2x+14-2x-2}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\\ \Rightarrow\frac{12}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}=\frac{12}{54}\)
\(\Rightarrow\left(x+1\right)\left(x+7\right)=54\\ \Rightarrow x^2+8x-54=0\Rightarrow x=-4\pm\sqrt{70}\)
x^3-6x^2+12x-8=0
-> x^3-2x^2-4x^2+8x+4x-8=0
-> x^2(x-2)-4x(x-2)+4(x-2)=0
-> (x-2)(x^2-4x+4)=0
->(x-2)(x-2)^2=0
-> (x-2)^3=0
->x-2=0
-> x=2 .
x^3-6x^2+12x-8=0
-> x^3-2x^2-4x^2+8x+4x-8=0
-> x^2(x-2)-4x(x-2)+4(x-2)=0
-> (x-2)(x^2-4x+4)=0
->(x-2)(x-2)^2=0
-> (x-2)^3=0
->x-2=0
-> x=2 .
nha ><
=(-x)^3+3*(-x)^2*2+3*(-x)*2^2+2^3
=(-x+2)^3