K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

 x3+1+(x2-x+1)=0

<=>(x+1)(x2-x+1)+(x2-x+1)=0

<=>(x2-x+1)(x+2)=0

<=>x=-2 (vì x2-x+1 >0 )

4 tháng 10 2018

Chả biết đúng hay sai :v làm thử 

\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có : 

\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)

\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)

\(\Leftrightarrow\)\(3x^2=0\)

\(\Leftrightarrow\)\(x^2=0\)

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có : 

\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)

\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

Đến đây giải giống như trên nha bạn 

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Vậy không có giá trị x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

Bạn nên tự làm thì hơn

20 tháng 8 2019

Tatsuya Yuuki( Team Megin Kawakuchi)

người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự  nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào

8 tháng 9 2016

dễ mà... ::)

9 tháng 9 2016

Vậy giải luôn đi -v-

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

4 tháng 11 2018

a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)

\(\Leftrightarrow\left(2x-2\right)^2=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

Vậy x = 1

b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)

\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)

\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)

=> Phương trình vô nghiệm

4 tháng 11 2018

phần a bạn có viết đề sai không zợ ???

1, bạn làm hai cái mũ 4 ra là làm đc

2) Ta có : x4 - x3 - x + 1 = 0

<=> x3(x - 1) - (x - 1) = 0 

<=> (x - 1)(x3 - 1) = 0 

<=> (x - 1)(x - 1)(x2 + x + 1) = 0 

<=> (x - 1)2(x2 + x + 1) = 0

<=> x - 1 = 0 (vì x2 + x + 1 > 0 với mọi x)

<=> x = 1

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)