K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Đặt: \(k=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow k^3=\frac{xyz}{3.4.5}=\frac{1620}{60}=27\)

=> k = 3

Nên \(\frac{x}{3}=3\Rightarrow x=9\)

        \(\frac{y}{4}=3\Rightarrow y=12\)

         \(\frac{z}{5}=3\Rightarrow z=15\)

Vậy x = 9 , y = 12 , z = 15

2 tháng 8 2017

a)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Leftrightarrow x=3k;y=4k;z=5k\)và \(xyz=1620\)

\(\Rightarrow3k.4k.5k=1620\Leftrightarrow60k^3=1620\)

\(\Rightarrow k=\sqrt[3]{1620:60}=3\)

\(\hept{\begin{cases}\frac{x}{3}=3\Rightarrow x=3.3=9\\\frac{y}{4}=3\Rightarrow y=3.4=12\\\frac{z}{5}=3\Rightarrow z=3.5=15\end{cases}}\)

Vậy \(x=9;y=12;z=15\)

b) 

Ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{6}\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\) và \(x+y+z=334\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{18}=\frac{x+y+z}{10+15+18}=\frac{334}{43}\)

\(\hept{\begin{cases}\frac{x}{10}=\frac{334}{43}\Rightarrow x=\frac{334}{43}.10=\frac{3340}{43}\\\frac{y}{15}=\frac{334}{43}\Rightarrow y=\frac{334}{43}.15=\frac{5010}{43}\\\frac{z}{18}=\frac{334}{43}\Rightarrow z=\frac{334}{43}.18=\frac{6012}{43}\end{cases}}\)

Vậy \(x=\frac{3340}{43};y=\frac{5010}{43};z=\frac{6012}{43}\)

19 tháng 7 2023

a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)

b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)

\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)

d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)

\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)

19 tháng 7 2023

a) �2=�5=�7;�+�+�=56

�2=�5=�7=�+�+�2+5+7=5614=4

⇒{�=4.2=8�=4.5=20�=4.7=28

b) �1,1=�1,3=�1,4(1);2�−�=5,5

(1)⇒2�−�1,1.2−1,3=5,50,9

d) �2=�3=�5;���=−30

�2=�3=�5=���2.3.5=−3030=−1

 

⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5
 

18 tháng 3 2023

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)

\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)

\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)

\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)

Vậy \(x=--40;y=-16\) và \(z=24\) 

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)

\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)

\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)

\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)

Vậy \(x=3;y=4\) và \(z=2\) 

a: 3x=7y

=>x/7=y/3=(x-y)/(7-3)=-16/4=-4

=>x=-28; y=-12

b: x/6=y/5

=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4

=>x=30/4=15/2; y=25/4

c: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)

=>x=3/5; y=-9/10; z=3/2

d: x/2=y/3

=>x/8=y/12

y/4=z/5

=>y/12=z/15

=>x/8=y/12=z/15

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

=>x=16; y=24; z=30

6 tháng 10 2017

ooooooooooooooooo