K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

a) x2 - 4x - 5 = 0

=> x2 - 5x + x - 5 = 0

=> x(x - 5) + (x - 5) = 0

=> (x + 1)(x - 5) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

b) 4x2 + 7x - 11 = 0

=> 4x2 + 11x - 4x - 11 = 0

=> x(4x + 11) - (4x + 11) = 0

=> (x - 1)(4x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)

22 tháng 7 2019

c) -7x2 + 6x + 1 = 0

=> -7x2 + 7x - x + 1 = 0

=> -7x(x - 1) - (x - 1) = 0

=> (-7x - 1)(x - 1) = 0

=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)

d) -10x2 + 7x + 3 = 0

=> -10x2 + 10x - 3x + 3 = 0

=> -10x(x - 1) - 3(x - 1) = 0

=> (-10x - 3)(x - 1) = 0

=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)

1: Ta có: \(x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

2: Ta có: \(x^2+7x+12=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

3: Ta có: \(x^2+8x+15=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

4: Ta có: \(x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha 

AH
Akai Haruma
Giáo viên
11 tháng 1 2020

Lời giải:
PT \(\Leftrightarrow 2x^4-2x^2+(7x^3-7x)+(3x^2-3)=0\)

\(\Leftrightarrow 2x^2(x^2-1)+7x(x^2-1)+3(x^2-1)=0\)

\(\Leftrightarrow (2x^2+7x+3)(x^2-1)=0\)

\(\Leftrightarrow (2x^2+6x+x+3)(x^2-1)=0\)

\(\Leftrightarrow [2x(x+3)+(x+3)](x^2-1)=0\)

\(\Leftrightarrow (x+3)(2x+1)(x-1)(x+1)=0\Rightarrow \left[\begin{matrix} x=-3\\ x=-\frac{1}{2}\\ x=-1\\ x=1\end{matrix}\right.\)

12 tháng 7 2021

\(x\left(3x-5\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)

Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)

12 tháng 7 2021

a) \(x\left(3x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)

b) \(3x^2-27=0\)

\(\Leftrightarrow3x^2=27\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow x=\pm3\)

c) \(\left(x-5\right)^2=x-5\)

\(\Leftrightarrow x^2-10x+25-x+5=0\)

\(\Leftrightarrow x^2-11x+30=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)

d) \(2\left(x+7\right)-x^2-7x=0\)

\(\Leftrightarrow2x+14-x^2-7x=0\)

\(\Leftrightarrow-x^2-5x+14=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)

e)\(7x\left(x-3\right)+2.3x=0\)

\(\Leftrightarrow7x^2-21x+6x=0\)

\(\Leftrightarrow7x^2-15x=0\)

\(\Leftrightarrow x\left(7x-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)

#H

a: =>-2x=-8

hay x=4

b: =>7x=-21

hay x=-3

c: =>0,25x=-1,5

hay x=-6

d: =>5,3x=6,36

hay x=6/5

e: =>-4x=-12

hay x=3

f: =>-10x=-10

hay x=1

g: =>2x+2-3-2x=0

=>-1=0(vô lý)

h: =>3-3x+4x-3=0

=>x=0

13 tháng 2 2022

a,

\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)

\(\Rightarrow x=-\dfrac{5}{2}\)

 

b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)

 

c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)

22 tháng 1 2017

x=2 nha bn

chuc bn hoc tot

happy new year

17 tháng 1 2017

a. dùng máy tính ta bấm được 1 nghiệm x=2/3

=> 3x3-6x2-6x-2x2+4x+4=0

<=> 3x(x2-2x-2)-2(x2-2x-2)=0

<=> (x2-2x-2)(3x-2)=0

\(\Leftrightarrow\left[\begin{matrix}x=1+\sqrt{3}\\x=1-\sqrt{3}\\x=\frac{2}{3}\end{matrix}\right.\)

21 tháng 3 2020

a)\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\cdot\left(x^3+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow2\cdot\left(x+1\right)\cdot\left(x^2+x+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left[2\cdot\left(x^2+x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2-2x+2+7x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x+1\right)\cdot\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-1}{2}\\x=-2\end{matrix}\right.\)

21 tháng 3 2020

b)\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)

\(\Leftrightarrow\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)-\left(\frac{x+5}{61}+1\right)-\left(\frac{x+7}{59}+1\right)=0\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\cdot\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)

1 tháng 10 2017

Ta có : 2x3+ 7x2+7x+2 =0

<=> \(2\left(x^3+1\right)+7x\left(x+1\right)=0\)

<=> \(2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

<=> \(\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)

<=> \(\left(x+1\right)\left(2x^2+5x+2\right)=0\)

<=> \(\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-0,5\\x=-2\end{matrix}\right.\)

1 tháng 10 2017

2x3+7x2+7x+2=0=>2(x3+1)+7x(x+1)=0

=>2(x+1)(x2-x+1)+7x(x+1)=0

=>(x+1)(2x2-2x+2+7x)=0

=> x = -1 hoặc 2x2+5x+2=0

=>2x2+4x+x+2=0

=>2x(x+2)+(x+2)=0

=>(x+2)(2x+1)=0

=>x=-1 hoặc x=-2 hoặc x=\(\dfrac{-1}{2}\)