K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có : 2x3+ 7x2+7x+2 =0

<=> \(2\left(x^3+1\right)+7x\left(x+1\right)=0\)

<=> \(2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

<=> \(\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)

<=> \(\left(x+1\right)\left(2x^2+5x+2\right)=0\)

<=> \(\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-0,5\\x=-2\end{matrix}\right.\)

1 tháng 10 2017

2x3+7x2+7x+2=0=>2(x3+1)+7x(x+1)=0

=>2(x+1)(x2-x+1)+7x(x+1)=0

=>(x+1)(2x2-2x+2+7x)=0

=> x = -1 hoặc 2x2+5x+2=0

=>2x2+4x+x+2=0

=>2x(x+2)+(x+2)=0

=>(x+2)(2x+1)=0

=>x=-1 hoặc x=-2 hoặc x=\(\dfrac{-1}{2}\)

I don't now 

sorry 

...................

nha

27 tháng 7 2018

a)   \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2=0\)

\(\Leftrightarrow\)\(\left[\left(3x-1\right)+\left(2x-1\right)\right]^2=0\)

\(\Leftrightarrow\)\(\left(5x-2\right)^2=0\)

\(\Leftrightarrow\)\(5x-2=0\)

\(\Leftrightarrow\)\(x=\frac{2}{5}\)

Vậy...

b)  \(\left(7x+2\right)^2+\left(7x-2\right)^2-2\left(7x+2\right)\left(7x-2\right)=0\)

\(\Leftrightarrow\)\(\left[\left(7x+2\right)-\left(7x-2\right)\right]^2=0\)

\(\Leftrightarrow\)\(4^2=0\)  vô lí

Vậy pt vô nghiệm

28 tháng 5 2017

 ban nao giup minh vs mjnh vs

28 tháng 5 2017

1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)

2. 5(2x - 1)2 - 3(2x - 1) = 0

<=> (2x - 1).[5(2x - 1) - 3] = 0

<=> (2x - 1).(10x - 8) = 0

<=> (2x - 1) = 0 hoặc (10x - 8) = 0

<=> x = 1/2 hoặc x = 4/5

3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3

Do: (x - 2)2 > hoặc = 0 (với mọi x)

Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)

Hay (x - 2)2 + 3 > 0 (với mọi x)  => đpcm

AH
Akai Haruma
Giáo viên
11 tháng 1 2020

Lời giải:
PT \(\Leftrightarrow 2x^4-2x^2+(7x^3-7x)+(3x^2-3)=0\)

\(\Leftrightarrow 2x^2(x^2-1)+7x(x^2-1)+3(x^2-1)=0\)

\(\Leftrightarrow (2x^2+7x+3)(x^2-1)=0\)

\(\Leftrightarrow (2x^2+6x+x+3)(x^2-1)=0\)

\(\Leftrightarrow [2x(x+3)+(x+3)](x^2-1)=0\)

\(\Leftrightarrow (x+3)(2x+1)(x-1)(x+1)=0\Rightarrow \left[\begin{matrix} x=-3\\ x=-\frac{1}{2}\\ x=-1\\ x=1\end{matrix}\right.\)

21 tháng 2 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)

Đặt \(t=x^2-4\), ta có :

\(t\left(t-6\right)-72=0\)

\(\Leftrightarrow t^2-6t-72=0\)

\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm4\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(2x+1=0\)

hoặc \(x+2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc \(x=-\frac{1}{2}\)

hoặc \(x=-2\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)

TH1 : \(x+1=0\Leftrightarrow x=-1\)

TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

=> \(x=-1;x=\pm2\)

b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40=72\)

\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)

Ta có pt mới : \(t^2-14t-32=0\) Tự xử 

16 tháng 1 2022

x = 1

16 tháng 1 2022

giai ra

26 tháng 7 2018

a)  \(7x^2-16x=2x^3-56\)

\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)

\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)

\(\Leftrightarrow\)\(2x-7=0\)

\(\Leftrightarrow\)\(x=3,5\)

Vậy...

b)  \(x^7+x^3+2x^5+2x=0\)

\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)

\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)

\(\Leftrightarrow\)\(x=0\)

Vậy...

c)  \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)

Vậy...

3 tháng 2 2019

\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)

\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)

.......................................................................................

\(x^3-8x^2-8x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)

......................................................................................

11 tháng 2 2019

cảm ơn nha