Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)
\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)
\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)
3: =4x^2+4x+1-2
=(2x+1)^2-2
\(=\left(2x+1-\sqrt{2}\right)\left(2x+1+\sqrt{2}\right)\)
4: =x^2+xy-5xy-5y^2
=x(x+y)-5y(x+y)
=(x+y)(x-5y)
(4x+1)(12x-1)(3x+2)(x+1)=4
<=> [(4x+1)(3x+2)].[(12x-1)(x+1)]=4
<=>(12x^2+11x+2)(12x^2+11x-1)=4
Đặt 12x^2+11x+2=t thì 12x^2+11x-1=t-3, thay vào phương trình trên ta có:
pt<=>t(t-3)=4
<=> t^2-3t-4=0
<=> (t-4)(t+1)=0
<=> t=4 hoặc t=-1
Thay t=12x^2+11x+2, có:
12x^2+11x+2=4 (1) hoặc 12t^2+11x+2= -1 (2)
Giải pt(1), ta có nghiệm x= [-11+ (căn bậc hai của (217)]/24 hoặc x= [-11-(căn bậc hai của(217)]/24
giải pt(2), ta thấy vô nghiệm.
( 4x + 1 ) ( 12x - 1 ) ( 3x + 2 ) ( x + 1 ) - 4
= ( 12x2 + 11x - 1 ) ( 12x2 + 11x + 2 ) - 4
Đặt 12x2 + 11x - 1 = a , ta có :
y2 + 3y - 4 = ( y - 1 ) ( y + 4 )
= ( 12x2 + 11x - 2 ) ( 12x2 + 11x + 6 )
.....
ko chắc
a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
\(x^3-3x^2+4x-2\)
\(=x^3-2x^2+2x-x^2+2x-2\)
\(=x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)