Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{x}{2}=\frac{y}{5};\frac{y}{3}=\frac{z}{2}\) và 2x + 3y - 4z = 34
\(\frac{x}{2}=\frac{y}{5}=\frac{1}{3}.\frac{x}{2}=\frac{1}{3}.\frac{y}{5}=\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}=\frac{1}{5}.\frac{y}{3}=\frac{1}{5}.\frac{z}{2}=\frac{y}{15}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\) và 2x + 3y -4z = 34
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\Rightarrow\frac{2x+3y-4z}{12+45-40}=\frac{34}{17}=2\)
\(\frac{x}{6}=2\Rightarrow x=2.6=12\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{10}=2\Rightarrow z=2.10=20\)
Vậy...
\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\) và \(x+y-z=10\)
Ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\) và \(x+y-z=10\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)
+) \(\dfrac{y}{8}=2\Rightarrow y=16\)
+) \(\dfrac{x}{12}=2\Rightarrow x=42\)
+) \(\dfrac{z}{15}=2\Rightarrow z=30\)
Vậy \(x=42;y=16;z=30\)
c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\) và \(2x+3y-4z=34\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
Ta lại có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\) và \(2x+3y-4z=34\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)
+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)
+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)
+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)
Vậy \(x=12;y=30;z=20\)
\(\)
ta có : \(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{10}\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
áp dụng tính chất dảy tỉ số bằng nhau
ta có : \(\dfrac{2x+3y-4z}{2.6+3.15-4.10}=\dfrac{34}{12+45-40}=\dfrac{34}{17}=2\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{6}=2\\\dfrac{y}{15}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\y=30\\z=20\end{matrix}\right.\) vậy \(x=12;y=30;z=20\)
Có:\(\dfrac{x}{2}=\dfrac{y}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\)
Và 2x + 3y - 4z = 34
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot12}{2}=12\\y=\dfrac{2\cdot45}{3}=30\\z=\dfrac{2\cdot40}{4}=20\end{matrix}\right.\)
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...