K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

      \(\left(xz+yt\right)^2+\left(xt-yz\right)^2\)

\(=x^2z^2+2xzyt+y^2t^2+x^2t^2-2xtyz+y^2z^2\)

\(=x^2z^2+x^2t^2+y^2z^2+y^2t^2\)

\(=x^2\left(z^2+t^2\right)+y^2\left(z^2+t^2\right)=\left(x^2+y^2\right)\left(z^2+t^2\right)\)

1 tháng 11 2021

\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)

1 tháng 11 2021

bạn giải lại giúp mình bài 2 được ko ạ

 

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

** Lần sau bạn lưu ý ghi đề bài đầy đủ.

Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$

----------------------------

Ta có:

BĐT cần cm tương đương với:

$x^2+y^2+z^2-xy-yz-xz\geq 0$

$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$

(luôn đúng với mọi số thực $x,y,z$)

Do đó ta có đpcm

Dấu "=" xảy ra khi $x=y=z$

16 tháng 4 2021

nhờ bạn làm hộ mình nốt câu nhé

 

21 tháng 6 2020

\(^{x^2+y^2+z^2-xy-yz-xz\ge0}\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(luôn đúng)

Dấu "=" khi x=y=z