Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>= and x;y;z>0
Ta có: \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(y^2+z^2-2yz\right)+\left(x^2+z^2-2xz\right)\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) *đúng*
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
chứng minh
\(x^2+y^2+z^2\ge xy+yz+xz\)
<=>\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
<=>\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
<=>\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
<=>\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\ge0\)
<=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) luôn đúng!
Dấu "=" xảy ra khi x=y=z