Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
Câu cuối đề chưa rõ ràng , mà cho dù có rõ cùng nên sử dụng đặt bằng k
Ta có:
Với mọi \(x;y;z\in R\)
\(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Đặt: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=t\Leftrightarrow\hept{\begin{cases}x^2=441t^2\\y^2=196t^2\\2z^2=200t^2\end{cases}}\)
Mà: \(x^2-y^2-2z^2=45\Leftrightarrow441t^2-196t^2-200t^2=45\Leftrightarrow45t^2=45\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)
Thay vào tìm được x;y;z
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\\ 5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\\ \Rightarrow\left\{{}\begin{matrix}x=21\cdot2=42\\y=14\cdot2=28\\z=10\cdot2=20\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{7}=\dfrac{z}{5}\) và \(3x+5x-7z=60\)
\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21};\dfrac{y}{21}=\dfrac{z}{15}\) và \(3x+5x-7z=60\)
\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}\) và \(3x+5x-7z=60\)
\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{3x+5y-7z}{3.14+5.21-7.15}=\dfrac{60}{42}=\dfrac{10}{7}\)
\(\dfrac{x}{14}=\dfrac{10}{7}\Rightarrow x=\dfrac{10}{7}.14=20\)
\(\dfrac{y}{21}=\dfrac{10}{7}\Rightarrow y=\dfrac{10}{7}.21=30\)
\(\dfrac{z}{15}=\dfrac{10}{7}\Rightarrow z=\dfrac{10}{7}.15=\dfrac{150}{7}=21,428..\approx21,438...\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)