K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2+y^2=7z^2

Bài tập Tất cả

0
20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

25 tháng 10 2015

dãy số tỉ bằng nhau mà làm

25 tháng 10 2015

Câu cuối đề chưa rõ ràng , mà cho dù có rõ cùng nên sử dụng đặt bằng k  

3 tháng 3 2018

Ta có:

Với mọi \(x;y;z\in R\)

\(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=t\Leftrightarrow\hept{\begin{cases}x^2=441t^2\\y^2=196t^2\\2z^2=200t^2\end{cases}}\)

Mà: \(x^2-y^2-2z^2=45\Leftrightarrow441t^2-196t^2-200t^2=45\Leftrightarrow45t^2=45\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)

Thay vào tìm được x;y;z

1 tháng 10 2021

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\\ 5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\\ \Rightarrow\left\{{}\begin{matrix}x=21\cdot2=42\\y=14\cdot2=28\\z=10\cdot2=20\end{matrix}\right.\)

1 tháng 10 2021

thanks bạn nha

chúc bạn một ngày vui vẻ :333

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

2 tháng 10 2017

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{7}=\dfrac{z}{5}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21};\dfrac{y}{21}=\dfrac{z}{15}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}\)\(3x+5x-7z=60\)

\(\Rightarrow\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{3x+5y-7z}{3.14+5.21-7.15}=\dfrac{60}{42}=\dfrac{10}{7}\)

\(\dfrac{x}{14}=\dfrac{10}{7}\Rightarrow x=\dfrac{10}{7}.14=20\)

\(\dfrac{y}{21}=\dfrac{10}{7}\Rightarrow y=\dfrac{10}{7}.21=30\)

\(\dfrac{z}{15}=\dfrac{10}{7}\Rightarrow z=\dfrac{10}{7}.15=\dfrac{150}{7}=21,428..\approx21,438...\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-y^2+2z^2=108\)

\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)

\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

4 tháng 3 2023

loading...