K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]-105=0\)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)-105=0\) (1)

Đặt \(x^2+10x+20=t\), khi đó (1) trở thành:

\(\left(t-4\right)\left(t+4\right)-105=0\)

\(\Leftrightarrow t^2-16-105=0\)

\(\Leftrightarrow t^2-11^2=0\)

\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Rightarrow\left(x^2+10x+20-11\right)\left(x^2+10x+20+11\right)=0\)

\(\Leftrightarrow\left(x^2+10x+9\right)\left(x^2+10x+31\right)=0\)

\(\Leftrightarrow\left(x^2+9x+x+9\right)\left[\left(x+5\right)^2+6\right]=0\)

\(\Leftrightarrow x\left(x+9\right)+\left(x+9\right)=0\) (vì \(\left(x+5\right)^2+6>0;\forall x\))

\(\Leftrightarrow\left(x+9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=-1\end{matrix}\right.\)

Vậy phương trình đã cho có tập nghiệm là $S=\{-9;-1\}$.

$Toru$

DT
15 tháng 6

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=105\\ \Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=105\\ \Leftrightarrow\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2-4^2=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2=121\\ \)

\(\Rightarrow\left[{}\begin{matrix}x^2+10x+20=11\left(1\right)\\x^2+10x+20=-11\left(2\right)\end{matrix}\right.\)

Giải (1):

\(x^2+10x+9=0\\ \Leftrightarrow\left(x^2+x\right)+\left(9x+9\right)=0\\ \Leftrightarrow x\left(x+1\right)+9\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

Giải (2):

Nhận thấy: \(x^2+10x+20=\left(x+5\right)^2-5\ge-5\forall x\inℝ\)

Vậy pt (2) vô nghiệm

Vậy tập nghiệm pt là: \(S=\left\{-1;-9\right\}\)

=>2/x(x+2)+2/(x+2)(x+4)+...+2/(x+6)(x+8)=8/105

=>1/x-1/x+2+1/x+2-1/x+4+...+1/x+6-1/x+8=8/105

=>\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

=>x(x+8)=105

=>x^2+8x-105=0

=>(x+15)(x-7)=0

=>x=7 hoặc x=-15

17 tháng 3 2023

mik ko hiểu cho lắm bạn có thể chỉ mik cách làm đc ko ạ

\(a)5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow-x+8x=12-5-6\)

\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)

6 tháng 2 2019

a) 5-(x-6)=4(3-2x)

<=>5-x-6=12-8x

<=>-x+8x=2-5-6

<=>7x=1

<=>x=1/7

17 tháng 2 2020

Giải:

Ta có:

\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)

\(\Leftrightarrow\frac{x}{15}+\frac{1}{15}+\frac{x}{7}+\frac{2}{7}+\frac{x}{4}+\frac{4}{4}+6=0\)

\(\Leftrightarrow\frac{x}{15}+\frac{x}{7}+\frac{x}{4}=-\frac{772}{105}\)

\(\Leftrightarrow x\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}\right)=-\frac{772}{105}\)

\(\Leftrightarrow x=-16\)

Vậy phương trình trên có nghiệm là x = -16.

b. Cách làm tương tự.

Chúc bạn học tốt@@

3 tháng 4 2016

x=-416

là đúng

3 tháng 4 2016

đúng k nhé
 

15 tháng 7 2017

(x+2)(x+4)(x+6)(x+8)+6=0

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+6=0.\)

Đặt \(x^2+10x+16=a=>x^2+10x+24=a+8.\)

\(\Leftrightarrow a\left(a+8\right)+6=0\Leftrightarrow a^2+8a+6=0\)

giải PT=>a=>x

P.s:đề là +16 sẽ hợp lý hơn

15 tháng 7 2017

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+6=0\) 

\(\Leftrightarrow\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+6=0\) 

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10+24\right)+6=0\) 

Đặt : \(x^2+10x+20=t\) , ta có: 

\(\left(t-4\right)\left(t+4\right)+6=0\)

\(\Leftrightarrow t^2-16+6=0\) 

\(\Leftrightarrow t^2-10=0\) 

\(\Leftrightarrow t^2=10\) 

Xét 2 trường hợp :

TH1:

t\(=\sqrt{10}\) 

\(\Leftrightarrow x^2+10x+20=\sqrt{10}\) 

\(\Leftrightarrow\left(x^2+10x+25\right)-5=\sqrt{10}\) 

\(\Leftrightarrow\left(x+5\right)^2=\sqrt{10}+5\) 

\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{\sqrt{10}+5}\\x+5=-\sqrt{\sqrt{10}+5}\end{cases}}\) 

\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{10}+5}-5\\x=-\sqrt{\sqrt{10}+5}-5\end{cases}}\) 

TH2:

\(t=-\sqrt{10}\) 

\(\Leftrightarrow\left(x+5\right)^2-5=-\sqrt{10}\) 

\(\Leftrightarrow\left(x+5\right)^2=-\sqrt{10}+5\) 

\(\Leftrightarrow\orbr{\begin{cases}x+5=\sqrt{5-\sqrt{10}}\\x+5=-\sqrt{5-10}\end{cases}}\) 

\(\Rightarrow\orbr{\begin{cases}x=\sqrt{5-\sqrt{10}}-5\\x=-\sqrt{5-\sqrt{10}}-5\end{cases}}\)

16 tháng 12 2022

1: =>(x+3)(x-5)=0

=>x=5 hoặc x=-3

2: =>(x-1)(5x-1)=0

=>x=1/5 hoặc x=1

5: =>(x-4)*x=0

=>x=0 hoặc x=4

10: =>(x+5)(x-3)=0

=>x=3 hoặc x=-5

9: =>(x-2)(x-4)=0

=>x=2 hoặc x=4

7: =>(x-6)(2x-1)=0

=>x=1/2 hoặc x=6

8: =>(2x-1)(3x-12)=0

=>x=4 hoặc x=1/2

17 tháng 11 2021

\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)

\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)

17 tháng 11 2021

\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)

\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)

a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)

\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

hay \(x\in\left\{-2;1\right\}\)

b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)

\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)

hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)

 

15 tháng 4 2020

1) (x+6)(3x-1)+x+6=0

⇔(x+6)(3x-1)+(x+6)=0

⇔(x+6)(3x-1+1)=0

⇔3x(x+6)=0

2) (x+4)(5x+9)-x-4=0

⇔(x+4)(5x+9)-(x+4)=0

⇔(x+4)(5x+9-1)=0

⇔(x+4)(5x+8)=0

3)(1-x)(5x+3)÷(3x-7)(x-1)

=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)

7 tháng 11 2017

Có 100 số 0