K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

\(x^2:\left(x-3\right)\left(đk:x\ne3\right)\)

\(=x^2:x-x^2:3\)

\(=x-\dfrac{x^2}{3}\)

\(\Leftrightarrow\dfrac{3}{x-2}>0\)

=>x-2>0

hay x>2

12 tháng 8 2021

Đây nè bạn. Mk chỉ mới nghĩ ra cách này thôi à!!! Bạn nào có cách nào thì bảo mk với nhé!!!

undefined

NV
13 tháng 8 2021

\(B=4\left(x+y\right)\left(x^2+y^2-xy\right)-6\left[\left(x+y\right)^2-2xy\right]\)

\(=4\left[\left(x+y\right)^2-3xy\right]-6\left(1-2xy\right)\)

\(=4-12xy-6+12xy\)

\(=-2\)

8 tháng 11 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1

19 tháng 3 2022

ĐK: x\(\ne\){-3;0;3}.

\(\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{3x^2}=\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{3x^2}=\dfrac{1}{3x}\).

14 tháng 3 2022

Giải PT hay gì thế

14 tháng 3 2022

giải phương trình nhé

5 tháng 10 2021

\(=x^6-6x^4+12x^2-8-x^3+x+6x^2-18x\\ =x^6-6x^4-x^3+18x^2-17x-8\)

9 tháng 2 2020

\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)

\(< =>\left(x-1+x\right)\left(x-1\right)^2=10x-5x^2-11x-22\)

\(< =>-x^2+x-1-10x+5x^2+11x+22=0\)

\(< =>4x^2+3x+21=0\)

\(< =>\left(2x\right)^2+2.2x.\frac{3}{4}+\left(\frac{3}{4}\right)^2+20\frac{9}{25}=0\)

\(< =>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}=0\)

Do \(\left(2x+\frac{3}{4}\right)^2\ge0=>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}\ge20\frac{9}{25}>0\)

Vậy phương trình vô nghiệm

9 tháng 2 2020

Dòng 2 là (x-1-x) nha @@