\(x^2:\left(x-3\right)\)

giúp mik vs, đặt tính chia vs ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

\(x^2:\left(x-3\right)\left(đk:x\ne3\right)\)

\(=x^2:x-x^2:3\)

\(=x-\dfrac{x^2}{3}\)

26 tháng 8 2021

Trả lời:

a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)

\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)

\(=x^6-8y^3-x^6+x^3y^3+8y^3\)

\(=x^3y^3\)

b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)

\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)

\(=x^3-8-x^3+3x^2-3x+1+7\)

\(=3x^2-3x\)

c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(4-x^2\right)+x^3+27\)

\(=4x-x^3+x^3+27\)

\(=4x+27\)

5 tháng 11 2024

\(^{ }\)

8 tháng 11 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1

19 tháng 8 2021

1) = x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x - 1

    = 6x^2

2) = x^3 + 1 - ( x^3 - 1 )

    = x^3 + 1 - x^3 + 1

    = 2 

3) dài lắm thôi ko viết ( Bạn áp dụng cái NHÂN ĐA THỨC VỚI ĐA THỨC nhé )

 Học tốt ~

9 tháng 2 2020

\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)

\(< =>\left(x-1+x\right)\left(x-1\right)^2=10x-5x^2-11x-22\)

\(< =>-x^2+x-1-10x+5x^2+11x+22=0\)

\(< =>4x^2+3x+21=0\)

\(< =>\left(2x\right)^2+2.2x.\frac{3}{4}+\left(\frac{3}{4}\right)^2+20\frac{9}{25}=0\)

\(< =>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}=0\)

Do \(\left(2x+\frac{3}{4}\right)^2\ge0=>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}\ge20\frac{9}{25}>0\)

Vậy phương trình vô nghiệm

9 tháng 2 2020

Dòng 2 là (x-1-x) nha @@

4 tháng 12 2017

a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)

21 tháng 8 2021

x^2 - 4x + 4 = 5 ( x - 2 ) 

x^2 - 4x + 4 - 5 ( x - 2 ) = 0 

( x - 2 ) ^2 - 5 ( x - 2 ) = 0 

( x - 2 ) ( x - 2 - 5 ) = 0

( x - 2 ) ( x - 7 ) = 0 

x  - 2 = 0 hoặc x - 7 = 0 

x = 2 hoặc x = 7 

c) (x-2)^2=5(x-2)

=> x-2=5 hoặc x-2 =0

=> x=7 hoặc x=2

d) (2x-3)^2=(5-x)^2

=> 2x-3=5-x

=> x=8/3

30 tháng 12 2016

Bài này nếu làm ra hết thì hơi dài nên chỉ hướng dẫn b thôi nhé.

Bạn chia thành các khoản x<-2;1>x>=-2; x>=1. Rồi bỏ dấu giá trị tuyệt đối giải từ từ