Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức
a) x2+16x+64
=> x2+2.8x+82
=> (x+8)2
b) 25x2+10x+1
=> (5x+1)2
c) x2-12x+36
=> (x+6)2
d) 4x2-4x+1
=> (2x-1)2
e) x2-2x+1
=> (x-1)2
1. x3 + 8 = (x + 2 )(x2 - x + 1)
2. 27 - 8y3 = ( 3 - 2y ) ( 9 + 6y + 4y2 )
3. y6 + 1 = (y2)3 + 1 = ( y2 + 1) ( y4 - y2 +1 )
4.64x3 - \(\dfrac{1}{8}\)y3 = ( 4x - \(\dfrac{1}{2}\)y ) ( 16x2 + 2xy + \(\dfrac{1}{4}\)y2)
5. 125x6 - 27y9 = (5x2)3 - (3y3)3
= ( 5x2 - 3y3)(25x4 +15x2y3 + 9y6)
a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)
b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)
c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)
d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.
a) x^4 - 2x^2 + 1 = 0
=> ( x^2 - 1 )^2 = 0
=> x^2 - 1 = 0
=> x^2 = 1
=> x = 1 hoặc x = -1
a) x4-2x2+1=0
(thang Tran giải rồi nhé)
b) x4-2x2-8=0
<=> x^4 - 2x^2 +1 -9 =0
<=> (x^2 -1)^2 -9 =0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=-3\\x^2-1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-2\left(VN\right)\\x=+_-\sqrt{2}\end{cases}}}\)
Vậy x=+- căn 2
c) x4-4x2-60=0
\(\Leftrightarrow x^4-4x^2+4-64=0\)
\(\Leftrightarrow\left(x^2-2\right)-64=0\)
\(\Leftrightarrow\left(x^2+62\right)\left(x^2-66\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+62=0\\x^2-66=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-62\left(VN\right)\\x^2=+_-\sqrt{66}\end{cases}}}\)
Vậy x=+- căn 66
d) x6-16x2+64=0
a) 2x3 + 6xy - x2z - 3yz
= ( 2x3 + 6xy ) - ( x2z + 3yz )
= 2x( x2 + 3y ) - z( x2 + 3y )
= ( x2 + 3y )( 2x - z )
b) x2 - 6xy + 9y2 - 49
= ( x2 - 6xy + 9y2 ) - 49
= ( x - 3y )2 - 72
= ( x - 3y - 7 )( x - 3y + 7 )
c) x3 + 4x2 + 16x + 64
= ( x3 + 4x2 ) + ( 16x + 64 )
= x2( x + 4 ) + 16( x + 4 )
= ( x + 4 )( x2 + 16 )
a) =(2x^3-x^2z)+(6xy-3yz)
=x^2(2x-z)+3y(2x-z)
=(x^2+3y)(2x-z)
b) =(x^2-6xy+9y^2)-7^2
=(x-3y)^2-7^2
=(x-3y+7)(x-3y-7)
c) =(x^3+4x^2)+(16x+64)
=x^2(x+4)+16(x+4)
=(x^2+16)(x+4)
Quá dễ:
Áp dụng hằng đẳng thức:\(\left(x+y\right)^2=x^2+2xy+y^2\)
Suy ra:\(x^2+16x+64=x^2+2.8.x+8^2=\left(x+8\right)^2=\left(x+8\right)\left(x+8\right)\)
a) x3 + 2x2y + xy2 – 9x
(Có x là nhân tử chung)
= x(x2 + 2xy + y2 – 9)
(Có x2 + 2xy + y2 là hằng đẳng thức)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
(Xuất hiện hằng đẳng thức (3)]
16x4 - 64 = 16(x4 - 4) = 16[(x2)2 - 22] = 16(x2 - 2)(x2 + 2) = 16[x2 -\(\left(\sqrt{2}\right)^2\)](x2 + 2) = 16\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)
\(16x^4-64\)
\(=16\left(x^4-4\right)\)
\(=16\left(x^2-2\right)\left(x^2+2\right)\)
\(=16\left(x^2-\left(\sqrt{2}\right)^2\right)\left(x^2+2\right)\)
\(=16\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x^2+2\right)\)
Bài này ra kết quả trên là lớp 9 . Còn lớp 8 là : \(16\left(x^2-2\right)\left(x^2+2\right)\)
a: \(=64x^3-48x^2+12x-1-\left(64x^2+12x-48x^2-9\right)\)
\(=64x^3-48x^2+12x-1-64x^2+48x^2-12x+9\)
=8
b: \(=x^3-3x^2+3x-1-x^3+3x^2-3x-1=-2\)
c: \(=x^3+6x^2+12x+8-x^3-12x-6x^2-72+64\)
=0
x2+64=16x
x\(^2\)-16x+64=0
(x-8)\(^2\)=0
<=>x-8=0
<=>x=8
???????????