Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(64x^3-48x^2+12x-1-64x^3+48x^2-12x+9=8\)
câu b sai đề bài
a) \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9=8\)
Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của biến x
b) Phần b sai đề phải là
\(\left(x-1\right)^3-x^3+3x^2-3x-1\)
\(=x^3-3x^2+3x-1-x^3+3x^2-3x-1=-2\)
Vậy ............................
A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )
=> A = 6x2 + 23x - 55 - 6x2 - 23x - 21
=> A = - 55 - 21
=> A = - 76 ( không phụ thuộc vào biến x )
B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )
=> B = 8x3 + 27 - 8x3 + 2
=> B = 27 + 2
=> B = 29 ( không phụ thuộc vào biến x )
C = ( x - 1 )3 - ( x + 1 )3 + 6 ( x + 1 ) ( x - 1 )
=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
=> C = - 6x2 - 2 + 6x2 - 6
=> C = - 2 - 6
=> C = - 8 ( không phụ thuộc vào biến x )
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)=8x^3+27-8x^3+2=29\)
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)=8\)
\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy+y^2\right)-3x^2-3y^2\)
\(=-2xy-x^2-y^2\)
\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1^2=-1\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6=8\)
Chúc bạn học tốt.
a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
Do đó: A=C+D
\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-4x^2-12x-9-5+20x\)
\(=-30\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
A=C+D=-30-175=-205
b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
Do đó: B=E+F
\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)
\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)
\(=-18x^3+8x^2+7x-4\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)
\(=-95\)
\(B=-18x^3+8x^2+7x-99\)
a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
bài 1:
a,\(\left(x+1\right)^3-\left(x+3\right)^2\cdot\left(x+1\right)+4x^2=\)-12
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1\right)^2-\left(x+3\right)^2]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1+x+3\right)\cdot\left(x+1-x-3\right)]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot\left(2x+4\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot2\cdot\left(x+2\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)\cdot\left(-4\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)-x^2=3\)
\(\Rightarrow x^2+2x+x+2-x^2=3\)
\(\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
a: \(=64x^3-48x^2+12x-1-\left(64x^2+12x-48x^2-9\right)\)
\(=64x^3-48x^2+12x-1-64x^2+48x^2-12x+9\)
=8
b: \(=x^3-3x^2+3x-1-x^3+3x^2-3x-1=-2\)
c: \(=x^3+6x^2+12x+8-x^3-12x-6x^2-72+64\)
=0