Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> ( 2x + 3 )( x - 5 ) - 2x( 2x + 3 ) = 0
<=> ( 2x + 3 )( -x - 5 ) = 0
<=> x = -3/2 hoặc x = -5
Vậy ...
\(\left(2x+3\right)\left(x-5\right)=4x^2+6x\Leftrightarrow\left(2x+3\right)\left(x-5\right)=2x\left(2x+3\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(-x-5\right)=0\Leftrightarrow x=-\frac{3}{2};x=-5\)
Vậy tập nghiệm của pt là S = { -5 ; -3/2 }
\(Q=\frac{x^2+2x+1}{x+2}=\frac{\left(x+1\right)^2}{x+2}\ge0\forall x>-2\) có GTNN là 0
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
\(x^2+y^2+z^2+2x-4y-6z+14\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\)
Vì \(\left(x+1\right)^2\ge0\forall x\); \(\left(y-2\right)^2\ge0\forall y\); \(\left(z-3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
hay \(x^2+y^2+z^2+2x-4y-6z+14\ge0\)\(\forall x,y,z\)
\(x^2+4y^2-4xy-z^2+6z-9\)
\(=\left(x^2-4xy+4y^2\right)-\left(z^2-6z+9\right)\)
\(=\left(x-2y\right)^2-\left(z-3\right)^2\)
\(=\left(x-2y-z+3\right)\left(x-2y+z-3\right)\)
hk
tốt