Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)
\(\Leftrightarrow x+1+x+2=3\)
\(\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy \(x=0\)
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\Leftrightarrow x=0\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)
Vì \(x\le3\Rightarrow\dfrac{2}{\sqrt{x}}\ge\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow-\dfrac{2}{\sqrt{x}}\le-\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow1-\dfrac{2}{\sqrt{3}}\le1-\dfrac{2}{\sqrt{3}}\)
\(\Rightarrow\)\(P\le\dfrac{3-2\sqrt{3}}{3}\)
Dấu = xra khi x=3
Vậy \(P_{max}=\dfrac{3-2\sqrt{3}}{3}\)
ĐK \(x\ge-3\)
PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)
<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)
+ Với x=-3 =>thỏa mãn
+Với \(x>-3\) ta liên hợp
\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)
<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)
Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)
=> \(x=1\)(TMĐKXĐ)
Vậy \(x=1;x=-3\)
\(x^2+4x+5=2\sqrt{2x+3}\)
\(ĐK:x\ge-\dfrac{3}{2}\)
\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)
\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)
Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy, pt có nghiệm duy nhất là x=-1