Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
5/ (x2 – 4) + (x – 2)(4 – 2x) = 0
⇔(x-2)(x+2)+(x – 2)(4 – 2x)=0
⇔(x-2)(x+2+4-2x)=0
⇔(x-2)(6-x)=0
⇔\(\left[{}\begin{matrix}x-2=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
6/ x(2x – 7) – 4x + 14 = 0
⇔2x2-11x+14=0
⇔(x-\(\frac{7}{2}\))(x-2)=0
⇔\(\left[{}\begin{matrix}x-\frac{7}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
7/ x2 – x – (3x–3)= 0
⇔x2-4x+3=0
⇔(x-3)(x-1)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
8/ (x2 – 2x + 1) – 4 = 0
⇔(x-1)2-4=0
⇔(x-1-4)(x-1+4)=0
⇔(x-5)(x+3)=0
⇔\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
9/ 4x2 + 4x + 1 = x2
⇔3x2+4x+1=0
⇔(3x+1)(x+1)=0
⇔\(\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-1\end{matrix}\right.\)
10/ x2 – x = - 2x + 2
⇔3x2-x-2=0 (chuyển vế)
⇔(3x+2)(x-1)=0
⇔\(\left[{}\begin{matrix}3x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=1\end{matrix}\right.\)
11/ x2 – 5x + 6 = 0
⇔x2-3x-2x+6=0
⇔x(x-3)-2(x-3)=0
⇔(x-3)(x-2)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Mình làm bài khá tắt nên có gì không hiểu bạn cứ hỏi mình nha!
1 ) x3 - 2x2 + x
= x( x2 - 2x + 1 )
= x ( x-1)2
2) 4x3 - 25x
= x ( 4x2 - 25)
= x( 2x-5) ( 2x +5)
11) \(x^2-y^2-4x+4\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
13) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)(1)
Đặt \(a=x^2+x\)
(1)\(=a^2-14a+24\)
\(=a^2-12a-2a+24\)
\(=a\left(a-12\right)-2\left(a-12\right)\)
\(=\left(a-12\right)\left(a-2\right)\)
\(=\left(x^2+x-12\right)\left(x^2+x-2\right)\)
\(=\left(x^2+4x-3x-12\right)\left(x^2+2x-x-2\right)\)
\(=\left[x\left(x+4\right)-3\left(x+4\right)\right]\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(=\left(x+4\right)\left(x-3\right)\left(x+2\right)\left(x-1\right)\)
b) Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+2x-x-2\right)\)
\(=\left(x^2+x+6\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c) Ta có: \(x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
d) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(2)
Đặt \(x^2+5x=b\)
(2)\(=\left(b+4\right)\left(b+6\right)+1\)
\(=b^2+10b+24+1\)
\(=b^2+10b+25\)
\(=\left(b+5\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
e) Ta có: \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(3)
Đặt \(c=x^2+8x\)
(3)\(=\left(c+7\right)\left(c+15\right)+15\)
\(=c^2+22c+105+15\)
\(=c^2+22c+120\)
\(=c^2+12c+10c+120\)
\(=c\left(c+12\right)+10\left(c+12\right)\)
\(=\left(c+12\right)\left(c+10\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)
\(=\left[x\left(x+6\right)+2\left(x+6\right)\right]\left(x^2+8x+10\right)\)
\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)
\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=t\), ta có:
\(A=t^2-14t+24\)
\(=t^2-2t-12t+24\)
\(=t\left(t-2\right)-12\left(t-2\right)\)
\(=\left(t-2\right)\left(t-12\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(B=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=t\), ta có:
\(B=t^2+4t-12\)
\(=t^2+6t-2t-12\)
\(=t\left(t+6\right)-2\left(t+6\right)\)
\(=\left(t+6\right)\left(t-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+4=t\), ta có:
\(C=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=t\), ta có:
\(D=t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t^2+3t+5t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\), ta có:
\(F=t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)\)
\(=\left(t+4\right)\left(t-3\right)\)
\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(E=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
câu 2 nha = (x2+5x+4)(x2+5x+6) - 24 =(x^2+5x + 5 - 1)(x^2 + 5x + 6 + 1) - 24 = (x^2+5x+5)^2 -25 (lấy -1 - 24 đc -25 hỉu ko)
= (x^2+5x + 5 - 5)(x ^2 + 5x + 5 + 5) = (x^2 +5x)(x^2+5x+10) ( dùng hằng đẳng thức a^2 - b^2 = (a+b)(a-b) )
mk đang bị âm bạn jup mk với