K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Đặt x2 + x + 1 = a

Khi đó : 

( a + 2x ) ( a - 2x ) = 5x2

\(\Leftrightarrow\)a2 - 4x2 = 5x2

\(\Leftrightarrow\)a2 - 9x2 =0

\(\Leftrightarrow\)( a - 3x ) ( a + 3x ) = 0

hay ( x2 -2x +1 ) ( x2 + 4x + 1 ) = 0

giải x tìm được \(\orbr{\begin{cases}x=1\\x=-2\pm\sqrt{3}\end{cases}}\)

26 tháng 7 2019

I I  là dấu giá trị tuyệt đối nhé

26 tháng 7 2019

|7 + 5x| = 1 - 4x

=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)

=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)

|4x- 2x| + 1 = 2x

=> |4x2 - 2x| = 2x - 1

=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)

=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)

Vậy ...

18 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

NV
23 tháng 10 2020

a.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Đặt \(\sqrt{\frac{x+1}{x-1}}=t>0\) ta được:

\(t-\frac{1}{t}=\frac{3}{2}\Leftrightarrow2t^2-3t-2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\frac{x+1}{x-1}=4\Leftrightarrow x+1=4x-4\Leftrightarrow x=...\)

b.

ĐKXĐ: \(x>-\frac{2}{5}\)

\(\Leftrightarrow3x+5x+2=\left(3-x\right)\sqrt{5x+2}\)

\(\Leftrightarrow8x+2=\left(3-x\right)\sqrt{5x+2}\)

Đặt \(\sqrt{5x+2}=t>0\Rightarrow x=\frac{t^2-2}{5}\)

\(\frac{8\left(t^2-2\right)}{5}+2=\left(3-\frac{t^2-2}{5}\right)t\)

\(\Leftrightarrow t^3+8t^2-17t-6=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^2+10t+3\right)=0\)

\(\Rightarrow t=2\Rightarrow\sqrt{5x+2}=2\Rightarrow5x+2=4\Rightarrow...\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)

NV
20 tháng 8 2021

a.

ĐKXĐ: \(x\ge2\)

\(\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+1\right)^2-x\)

\(\Leftrightarrow\left(x+\sqrt{x}+1\right)\sqrt{x-2}=\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x-2}=x-\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x-2}+\sqrt{x}=x+1\)

\(\Leftrightarrow2x-2+2\sqrt{x^2-2x}=x^2+2x+1\)

\(\Leftrightarrow x^2-2\sqrt{x^2-2x}+3=0\)

\(\Leftrightarrow\left(\sqrt{x^2-2x}-1\right)^2+2x+2=0\) (vô nghiệm do \(2x+2>0\))

Vậy pt đã cho vô nghiệm

NV
20 tháng 8 2021

b. ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow2x^2-3x+1+2\left(x-1\right)\sqrt{2x^2-3x+1}+x^2-2x-3=0\)

Đặt \(\sqrt{2x^2-3x+1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t+x^2-2x-3=0\)

\(\Delta'=\left(x-1\right)^2-\left(x^2-2x-3\right)=4\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x-2=-x-1\\t=1-x+2=3-x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-3x+1}=-x-1\left(x\le-1\right)\\\sqrt{2x^2-3x+1}=3-x\left(x\le3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x=0\left(vn\right)\\x^2+3x-8=0\left(x\le3\right)\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{-3\pm\sqrt{41}}{2}\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)